高中数学高考2 第2讲 两直线的位置关系 新题培优练
展开[基础题组练]
1.已知直线l1:mx+y-1=0与直线l2:(m-2)x+my-2=0,则“m=1”是“l1⊥l2”的( )
A.充分不必要条件 B.充要条件
C.必要不充分条件 D.既不充分也不必要条件
解析:选A.由l1⊥l2,得m(m-2)+m=0,解得m=0或m=1,所以“m=1”是“l1⊥l2”的充分不必要条件,故选A.
2.若直线l1:x+ay+6=0与l2:(a-2)x+3y+2a=0平行,则l1与l2之间的距离为( )
A. B.4
C. D.2
解析:选C.因为l1∥l2,所以=≠,解得a=-1,所以l1与l2的方程分别为l1:x-y+6=0,l2:x-y+=0,所以l1与l2的距离d==.
3.若点P在直线3x+y-5=0上,且P到直线x-y-1=0的距离为,则点P的坐标为( )
A.(1,2) B.(2,1)
C.(1,2)或(2,-1) D.(2,1)或(-1,2)
解析:选C.设P(x,5-3x),则d==,化简得|4x-6|=2,即4x-6=±2,解得x=1或x=2,故P(1,2)或(2,-1).
4.直线ax+y+3a-1=0恒过定点M,则直线2x+3y-6=0关于M点对称的直线方程为( )
A.2x+3y-12=0 B.2x-3y-12=0
C.2x-3y+12=0 D.2x+3y+12=0
解析:选D.由ax+y+3a-1=0,可得a(x+3)+(y-1)=0,令可得x=-3,y=1,所以M(-3,1),M不在直线2x+3y-6=0上,设直线2x+3y-6=0关于M点对称的直线方程为2x+3y+c=0(c≠-6),则=,解得c=12或c=-6(舍去),所以所求方程为2x+3y+12=0,故选D.
5.已知直线y=2x是△ABC中∠C的平分线所在的直线,若点A,B的坐标分别是(-4,2),(3,1),则点C的坐标为 ( )
A.(-2,4) B.(-2,-4)
C.(2,4) D.(2,-4)
解析:选C.设A(-4,2)关于直线y=2x的对称点为(x,y),则解得所以BC所在直线方程为y-1=(x-3),即3x+y-10=0.同理可得点B(3,1)关于直线y=2x的对称点为(-1,3),所以AC所在直线方程为y-2=·(x+4),即x-3y+10=0.联立得解得则C(2,4).故选C.
6.(一题多解)已知直线y=kx+2k+1与直线y=-x+2的交点位于第一象限,则实数k的取值范围是________.
解析:法一:由方程组
解得
(若2k+1=0,即k=-,则两直线平行,没有交点)
所以交点坐标为.
又因为交点位于第一象限,所以
解得-<k<.
法二:如图,已知直线y=-x+2与x轴、y轴分别交于点A(4,0),B(0,2).
而直线方程y=kx+2k+1可变形为y-1=k(x+2),表示这是一条过定点P(-2,1),斜率为k的动直线.
因为两直线的交点在第一象限,
所以两直线的交点必在线段AB上(不包括端点),
所以动直线的斜率k需满足kPA<k<kPB.
因为kPA=-,kPB=.
所以-<k<.
答案:
7.已知一直线经过点(1,2),并且与点(2,3)和(0,-5)的距离相等,则此直线的方程为________.
解析:若所求直线的斜率存在,则可设其方程为:
y-2=k(x-1),即kx-y-k+2=0,
由题设有=,
即|k-1|=|k-7|,解得k=4.
此时直线方程为4x-y-2=0.
又若所求直线的斜率不存在,方程为x=1,
满足题设条件.
故所求直线的方程为4x-y-2=0或x=1.
答案:4x-y-2=0或x=1
8.已知点A(-1,2),B(3,4).P是x轴上一点,且|PA|=|PB|,则△PAB的面积为________.
解析:设AB的中点坐标为M(1,3),
kAB==,
所以AB的中垂线方程为y-3=-2(x-1).
即2x+y-5=0.
令y=0,则x=,
即P点的坐标为(,0),
|AB|==2.
P到AB的距离为|PM|==.
所以S△PAB=|AB|·|PM|=×2×=.
答案:
9.已知两直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b的值.
(1)l1⊥l2,且直线l1过点(-3,-1);
(2)l1∥l2,且坐标原点到这两条直线的距离相等.
解:(1)因为l1⊥l2,
所以a(a-1)-b=0.
又因为直线l1过点(-3,-1),
所以-3a+b+4=0.
故a=2,b=2.
(2)因为直线l2的斜率存在,l1∥l2,
所以直线l1的斜率存在.
所以=1-a.①
又因为坐标原点到这两条直线的距离相等,
所以l1,l2在y轴上的截距互为相反数,即=b.②
联立①②可得a=2,b=-2或a=,b=2.
10.已知直线l经过直线2x+y-5=0与x-2y=0的交点P.
(1)点A(5,0)到直线l的距离为3,求直线l的方程;
(2)求点A(5,0)到直线l的距离的最大值.
解:(1)因为经过两已知直线交点的直线系方程为
(2x+y-5)+λ(x-2y)=0,即(2+λ)x+(1-2λ)y-5=0,
所以=3,解得λ=或λ=2.
所以直线l的方程为x=2或4x-3y-5=0.
(2)由
解得交点P(2,1),如图,过P作任一直线l,设d为点A到直线l的距离,
则d≤|PA|(当l⊥PA时等号成立).
所以dmax=|PA|=.
[综合题组练]
1.已知直线4x+my-6=0与直线5x-2y+n=0垂直,垂足为(t,1),则n的值为( )
A.7 B.9
C.11 D.-7
解析:选A.由直线4x+my-6=0与直线5x-2y+n=0垂直得,20-2m=0,m=10.直线4x+10y-6=0过点(t,1),所以4t+10-6=0,t=-1.点(-1,1)又在直线5x-2y+n=0上,所以-5-2+n=0,n=7.
2.两条平行线l1,l2分别过点P(-1,2),Q(2,-3),它们分别绕P,Q旋转,但始终保持平行,则l1,l2之间距离的取值范围是( )
A.(5,+∞) B.(0,5]
C.(,+∞) D.(0,]
解析:选D.当直线PQ与平行线l1,l2垂直时,|PQ|为平行线l1,l2间的距离的最大值,为=,所以l1,l2之间距离的取值范围是(0,].故选D.
3.在平面直角坐标系xOy(O为坐标原点)中,不过原点的两直线l1:x-my+2m-1=0,l2:mx+y-m-2=0的交点为P,过点O分别向直线l1,l2引垂线,垂足分别为M,N,则四边形OMPN面积的最大值为( )
A.3 B.
C.5 D.
解析:选D.将直线l1的方程变形得(x-1)+m(2-y)=0,
由,得,则直线l1过定点A(1,2),同理可知,直线l2过定点A(1,2),
所以,直线l1和直线l2的交点P的坐标为(1,2),易知,直线l1⊥l2,如图所示,
易知,四边形OMPN为矩形,且|OP|==,
设|OM|=a,|ON|=b,则a2+b2=5,
四边形OMPN的面积为S=|OM|·|ON|=ab≤=,
当且仅当,即当a=b=时,等号成立,
因此,四边形OMPN面积的最大值为,故选D.
4.(应用型)如图,已知A(-2,0),B(2,0),C(0,2),E(-1,0),F(1,0),一束光线从F点出发射到BC上的D点,经BC反射后,再经AC反射,落到线段AE上(不含端点),则直线FD的斜率的取值范围为________.
解析:从特殊位置考虑.如图,
因为点A(-2,0)关于直线BC:x+y=2的对称点为A1(2,4),所以kA1F=4.又点E(-1,0)关于直线AC:y=x+2的对称点为E1(-2,1),点E1(-2,1)关于直线BC:x+y=2的对称点为E2(1,4),此时直线E2F的斜率不存在,所以kFD>kA1F,即kFD∈(4,+∞).
答案:(4,+∞)
5.正方形的中心为点C(-1,0),一条边所在的直线方程是x+3y-5=0,求其他三边所在直线的方程.
解:点C到直线x+3y-5=0的距离d==.
设与x+3y-5=0平行的一边所在直线的方程是x+3y+m=0(m≠-5),
则点C到直线x+3y+m=0的距离
d==,
解得m=-5(舍去)或m=7,
所以与x+3y-5=0平行的边所在直线的方程是x+3y+7=0.
设与x+3y-5=0垂直的边所在直线的方程是3x-y+n=0,
则点C到直线3x-y+n=0的距离
d==,
解得n=-3或n=9,
所以与x+3y-5=0垂直的两边所在直线的方程分别是3x-y-3=0和3x-y+9=0.
6.(创新型)在直线l:3x-y-1=0上求一点P,使得:
(1)P到A(4,1)和B(0,4)的距离之差最大;
(2)P到A(4,1)和C(3,4)的距离之和最小.
解:(1)如图,设B关于l的对称点为B′,AB′的延长线交l于P0,在l上另任取一点P,则|PA|-|PB|=|PA|-|PB′|<|AB′|=|P0A|-|P0B′|=|P0A|-|P0B|,则P0即为所求.
易求得直线BB′的方程为x+3y-12=0,
设B′(a,b),则a+3b-12=0,①
又线段BB′的中点在l上,故3a-b-6=0.②
由①②解得a=3,b=3,
所以B′(3,3).
所以AB′所在直线的方程为2x+y-9=0.
由可得P0(2,5).
(2)设C关于l的对称点为C′,与(1)同理可得C′.
连接AC′交l于P1,在l上另任取一点P,有|PA|+|PC|=|PA|+|PC′|>|AC′|=|P1C′|+|P1A|=|P1C|+|P1A|,故P1即为所求.
又AC′所在直线的方程为19x+17y-93=0,
故由可得P1.
高中数学高考第45讲 两直线的位置关系(讲)(学生版): 这是一份高中数学高考第45讲 两直线的位置关系(讲)(学生版),共6页。试卷主要包含了两条直线平行与垂直的判定,两直线相交,三种距离公式,线关于点对称的实质等内容,欢迎下载使用。
高中数学高考6 第5讲 第2课时 直线与椭圆的位置关系 新题培优练: 这是一份高中数学高考6 第5讲 第2课时 直线与椭圆的位置关系 新题培优练,共8页。试卷主要包含了若直线mx+ny=4与⊙O,已知椭圆C等内容,欢迎下载使用。
高中数学高考4 第4讲 直线与圆、圆与圆的位置关系 新题培优练: 这是一份高中数学高考4 第4讲 直线与圆、圆与圆的位置关系 新题培优练,共6页。试卷主要包含了直线l,已知圆C,如果圆C,已知直线l,已知抛物线C等内容,欢迎下载使用。