高中数学高考25第四章 三角函数、解三角形 4 7 解三角形的实际应用
展开
这是一份高中数学高考25第四章 三角函数、解三角形 4 7 解三角形的实际应用,共10页。试卷主要包含了判断下列结论是否正确等内容,欢迎下载使用。
§4.7 解三角形的实际应用最新考纲考情考向分析能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.以利用正弦定理、余弦定理测量距离、高度、角度等实际问题为主,常与三角恒等变换、三角函数的性质结合考查,加强数学知识的应用性.题型主要为选择题和填空题,中档难度. 实际测量中的常见问题求AB图形需要测量的元素解法求竖直高度底部可达∠ACB=α,BC=a解直角三角形AB=atan α底部不可达∠ACB=α,∠ADB=β,CD=a解两个直角三角形AB=求水平距离山两侧∠ACB=α,AC=b,BC=a用余弦定理AB=河两岸∠ACB=α,∠ABC=β,CB=a用正弦定理AB=河对岸∠ADC=α,∠BDC=β,∠BCD=δ,∠ACD=γ,CD=a在△ADC中,AC=;在△BDC中,BC=;在△ABC中,应用余弦定理求AB 概念方法微思考在实际测量问题中有哪几种常见类型,解决这些问题的基本思想是什么? 题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为α+β=180°.( )(2)俯角是铅垂线与视线所成的角,其范围为.( )(3)方位角与方向角其实质是一样的,均是确定观察点与目标点之间的位置关系.( )(4)方位角大小的范围是[0,2π),方向角大小的范围一般是.( )题组二 教材改编2.如图所示,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出A,C的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B两点的距离为________ m.3.如图,在山脚A测得山顶P的仰角为30°,沿倾斜角为15°的斜坡向上走a米到B,在B处测得山顶P的仰角为60°,则山高h=______米.题组三 易错自纠4.要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角30°,并测得水平面上的∠BCD=120°,CD=40 m,则电视塔的高度为( )A.10 m B.20 mC.20 m D.40 m5.在某次测量中,在A处测得同一半平面方向的B点的仰角是60°,C点的俯角是70°,则∠BAC=________.6.海上有A,B,C三个小岛,A,B相距5 海里,从A岛望C和B成45°视角,从B岛望C和A成75°视角,则B,C两岛间的距离是________海里.题型一 测量距离问题1.(2018·营口检测)江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距____m.2.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD= km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离为________ km.3.如图,为了测量两座山峰上P,Q两点之间的距离,选择山坡上一段长度为300 m且和P,Q两点在同一平面内的路段AB的两个端点作为观测点,现测得∠PAB=90°,∠PAQ=∠PBA=∠PBQ=60°,则P,Q两点间的距离为________ m.题型二 测量高度问题例1 (2018·赤峰测试)如图,小明同学在山顶A处观测到一辆汽车在一条水平的公路上沿直线匀速行驶,小明在A处测得公路上B,C两点的俯角分别为30°,45°,且∠BAC=135°,若山高AD=100 m,汽车从B点到C点历时14 s,则这辆汽车的速度约为________ m/s.(精确到0.1,参考数据:≈1.414,≈2.236)跟踪训练1 如图所示,在山顶铁塔上B处测得地面上一点A的俯角为α,在塔底C处测得A处的俯角为β.已知铁塔BC部分的高为h,则山高CD=____________.题型三 角度问题例2 如图所示,一艘巡逻船由南向北行驶,在A处测得山顶P在北偏东15°(∠BAC=15°)的方向,匀速向北航行20分钟后到达B处,测得山顶P位于北偏东60°的方向,此时测得山顶P的仰角为60°,已知山高为2 千米.(1)船的航行速度是每小时多少千米?(2)若该船继续航行10分钟到达D处,问此时山顶位于D处南偏东多少度的方向? 跟踪训练2 如图所示,已知两座灯塔A和B与海洋观察站C的距离相等,灯塔A在观察站C的北偏东40°的方向上,灯塔B在观察站C的南偏东60°的方向上,则灯塔A在灯塔B的______的方向上. 1.(2018·沈阳调研)已知A,B两地间的距离为10 km,B,C两地间的距离为20 km,现测得∠ABC=120°,则A,C两地间的距离为( )A.10 km B.10 kmC.10 km D.10 km2.如图所示,在坡度一定的山坡A处测得山顶上一建筑物CD的顶端C对于山坡的斜度为15°,向山顶前进100 m到达B处,又测得C对于山坡的斜度为45°,若CD=50 m,山坡对于地平面的坡度为θ,则cos θ等于( )A. B. C.-1 D.-13.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10 海里 B.10 海里C.20 海里 D.20 海里4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,50 m,BD为水平面,则从建筑物AB的顶端A看建筑物CD的张角为( )A.30° B.45° C.60° D.75°5.(2018·呼和浩特质检)如图所示,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )A.5 B.15C.5 D.156.(2018·丹东模拟)如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于( )A.240(+1)m B.180(-1)mC.120(-1)m D.30(+1)m7.(2018·乌海模拟)如图,某工程中要将一长为100 m,倾斜角为75°的斜坡改造成倾斜角为30°的斜坡,并保持坡高不变,则坡底需加长________m.8.如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°、相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,则cos θ的值为________.9.(2018·阜新模拟)一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时________海里.10.(2018·盘锦质检)如图,某住宅小区的平面图呈圆心角为120°的扇形AOB,C是该小区的一个出入口,且小区里有一条平行于AO的小路CD.已知某人从O沿OD走到D用了2分钟,从D沿DC走到C用了3分钟.若此人步行的速度为每分钟50米,则该扇形的半径为______米.11.如图,在山底A点处测得山顶仰角∠CAB=45°,沿倾斜角为30°的斜坡走1 000米至S点,又测得山顶仰角∠DSB=75°,则山高BC为______米.12.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值. 13.如图,在水平地面上有两座直立的相距60 m的铁塔AA1和BB1.已知从塔AA1的底部看塔BB1顶部的仰角是从塔BB1的底部看塔AA1顶部的仰角的2倍,从两塔底部连线中点C分别看两塔顶部的仰角互为余角,则从塔BB1的底部看塔AA1顶部的仰角的正切值为________;塔BB1的高为________ m.14.如图,据气象部门预报,在距离某码头南偏东45°方向600 km处的热带风暴中心正以20 km/h的速度向正北方向移动,距风暴中心450 km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为________h.15.某舰艇在A处测得一艘遇险渔船在其北偏东40°的方向距离A处10海里的C处,此时得知,该渔船正沿南偏东80°的方向以每小时9海里的速度向一小岛靠近,若舰艇的时速为21海里,则舰艇追上渔船的最短时间是______小时.16.如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C,现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50 m/min.在甲出发2 min后,乙从A乘缆车到B,在B处停留1 min后,再匀速步行到C.假设缆车匀速直线运动的速度为130 m/min,山路AC长为1 260 m,经测量得cos A=,sin B=.(1)问乙出发多少 min后,乙在缆车上与甲的距离最短?(2)为使两位游客在C处互相等待的时间不超过3 min,乙步行的速度应控制在什么范围内?
相关试卷
这是一份高中数学高考第7讲 解三角形应用举例,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份高中数学高考27第四章 三角函数、解三角形 高考专题突破2 高考中的三角函数与解三角形问题,共7页。
这是一份高中数学高考26第四章 三角函数、解三角形 4 7 解三角形的综合应用,共11页。试卷主要包含了判断下列结论是否正确,记∠AMN=θ.等内容,欢迎下载使用。