高中数学高考37第一部分 板块四 回扣5 立体几何
展开
这是一份高中数学高考37第一部分 板块四 回扣5 立体几何,共3页。试卷主要包含了三视图,柱、锥、台、球体的表面积和体积,几种角的范围等内容,欢迎下载使用。
回扣5 立体几何1.三视图(1)三视图的正(主)视图、侧(左)视图、俯视图分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.(2)三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样.2.柱、锥、台、球体的表面积和体积 侧面展开图表面积体积直棱柱长方形S=2S底+S侧V=S底·h圆柱长方形S=2πr2+2πrlV=πr2·l棱锥由若干个三角形构成S=S底+S侧V=S底·h圆锥扇形S=πr2+πrlV=πr2·h棱台由若干个梯形构成S=S上底+S下底+S侧V=(S++S′)·h圆台扇环S=πr′2+π(r+r′)l+πr2V=π(r2+rr′+r′2)·h球 S=4πr2V=πr3 3.平行、垂直关系的转化示意图(1)(2)两个结论①⇒a∥b;②⇒b⊥α.1.混淆“点A在直线a上”与“直线a在平面α内”的数学符号关系,应表示为A∈a,a⊂α.2.在由三视图还原为空间几何体的实际形状时,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线为虚线.在还原空间几何体实际形状时一般是以正(主)视图和俯视图为主.3.易混淆几何体的表面积与侧面积的区别,几何体的表面积是几何体的侧面积与所有底面面积之和,不能漏掉几何体的底面积;求锥体体积时,易漏掉体积公式中的系数.4.不清楚空间线面平行与垂直关系中的判定定理和性质定理,忽视判定定理和性质定理中的条件,导致判断出错.如由α⊥β,α∩β=l,m⊥l,易误得出m⊥β的结论,就是因为忽视面面垂直的性质定理中m⊂α的限制条件.5.注意图形的翻折与展开前后变与不变的量以及位置关系.对照前后图形,弄清楚变与不变的元素后,再立足于不变的元素的位置关系与数量关系去探求变化后的元素在空间中的位置关系与数量关系.6.几种角的范围两条异面直线所成的角:0°<α≤90°;直线与平面所成的角:0°≤α≤90°;二面角:0°≤α≤180°.
相关试卷
这是一份高中数学高考10第一部分 板块二 专题三 立体几何 第2讲 立体几何(大题),共9页。
这是一份高中数学高考40第一部分 板块四 回扣8 函数与导数,共5页。试卷主要包含了函数的定义域和值域,函数的奇偶性、周期性,关于函数周期性、对称性的结论,函数的单调性,函数图象的基本变换,函数与方程,导数的几何意义,利用导数研究函数的单调性等内容,欢迎下载使用。
这是一份高中数学高考39第一部分 板块四 回扣7 解析几何,共5页。试卷主要包含了直线方程的五种形式,直线的两种位置关系,三种距离公式,圆的方程的两种形式,直线与圆、圆与圆的位置关系,解决范围、最值问题的常用方法,定点问题的思路,求解定值问题的两大途径等内容,欢迎下载使用。