高中数学高考40第一部分 板块四 回扣8 函数与导数
展开
这是一份高中数学高考40第一部分 板块四 回扣8 函数与导数,共5页。试卷主要包含了函数的定义域和值域,函数的奇偶性、周期性,关于函数周期性、对称性的结论,函数的单调性,函数图象的基本变换,函数与方程,导数的几何意义,利用导数研究函数的单调性等内容,欢迎下载使用。
回扣8 函数与导数1.函数的定义域和值域(1)求函数定义域的类型和相应方法①若已知函数的解析式,则函数的定义域是使解析式有意义的自变量的取值范围;②若已知f(x)的定义域为[a,b],则f(g(x))的定义域为不等式a≤g(x)≤b的解集;反之,已知f(g(x))的定义域为[a,b],则f(x)的定义域为函数y=g(x)(x∈[a,b])的值域.(2)常见函数的值域①一次函数y=kx+b(k≠0)的值域为R;②二次函数y=ax2+bx+c(a≠0):当a>0时,值域为,当a<0时,值域为;③反比例函数y=(k≠0)的值域为{y∈R|y≠0}.2.函数的奇偶性、周期性(1)奇偶性是函数在其定义域上的整体性质,对于定义域内的任意x(定义域关于原点对称),都有f(-x)= 成立,则f(x)为奇函数(都有f(-x)= 成立,则f(x)为偶函数).(2)周期性是函数在其定义域上的整体性质,一般地,对于函数f(x),如果对于定义域内的任意一个x的值,若 ,则f(x)是周期函数,T是它的一个周期.3.关于函数周期性、对称性的结论(1)函数的周期性①若函数f(x)满足f(x+a)=f(x-a),则f(x)为周期函数, 是它的一个周期;②设f(x)是R上的偶函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数, 是它的一个周期;③设f(x)是R上的奇函数,且图象关于直线x=a(a≠0)对称,则f(x)是周期函数, 是它的一个周期.(2)函数图象的对称性①若函数y=f(x)满足f(a+x)=f(a-x),即f(x)=f(2a-x),则f(x)的图象关于直线 对称;②若函数y=f(x)满足f(a+x)=-f(a-x),即f(x)=-f(2a-x),则f(x)的图象关于点 对称;③若函数y=f(x)满足f(a+x)=f(b-x),则函数f(x)的图象关于直线x=对称.4.函数的单调性函数的单调性是函数在其定义域上的局部性质.①单调性的定义的等价形式:设任意x1,x2∈[a,b],且x1≠x2,那么(x1-x2)[f(x1)-f(x2)]>0⇔>0⇔f(x)在[a,b]上是 函数;(x1-x2)[f(x1)-f(x2)]<0⇔<0⇔f(x)在[a,b]上是 函数.②若函数f(x)和g(x)都是减函数,则在公共定义域内,f(x)+g(x)是减函数;若函数f(x)和g(x)都是增函数,则在公共定义域内,f(x)+g(x)是增函数;根据同增异减判断复合函数y=f(g(x))的单调性.5.函数图象的基本变换(1)平移变换y=f(x)y=f(x+h),简记为“左加右减”;y=f(x)y=f(x)+k,简记为“上加下减”.(2)伸缩变换y=f(x)y=f(ωx),y=f(x)y=Af(x).(3)对称变换y=f(x)y=-f(x),y=f(x)y=f(-x),y=f(x)y=-f(-x).6.准确记忆指数函数与对数函数的基本性质(1)定点:y=ax(a>0,且a≠1)恒过(0,1)点;y=logax(a>0,且a≠1)恒过(1,0)点.(2)单调性:当a>1时,y=ax在R上单调递增;y=logax在(0,+∞)上单调递增;当0<a<1时,y=ax在R上单调递减;y=logax在(0,+∞)上单调递减.7.函数与方程(1)零点定义:x0为函数f(x)的零点⇔f(x0)=0⇔(x0,0)为f(x)的图象与x轴的交点.(2)确定函数零点的三种常用方法①解方程判定法:解方程f(x)=0;②零点存在性定理法:根据连续函数y=f(x)满足f(a)f(b)<0,判断函数在区间(a,b)内存在零点;③数形结合法:尤其是方程两端对应的函数类型不同时多用此法求解.8.导数的几何意义(1)f′(x0)的几何意义:曲线y=f(x)在点(x0,f(x0))处的切线的斜率,该切线的方程为y-f(x0)=f′(x0)·(x-x0).(2)切点的两大特征:①在曲线y=f(x)上;②在切线上.9.利用导数研究函数的单调性(1)求可导函数单调区间的一般步骤①求函数f(x)的定义域;②求导函数f′(x);③由f′(x)>0的解集确定函数f(x)的单调增区间,由f′(x)<0的解集确定函数f(x)的单调减区间.(2)由函数的单调性求参数的取值范围①若可导函数f(x)在区间M上单调递增,则f′(x)≥0(x∈M)恒成立;若可导函数f(x)在区间M上单调递减,则f′(x)≤0(x∈M)恒成立;②若可导函数在某区间上存在单调递增(减)区间,f′(x)>0(或f′(x)<0)在该区间上存在解集;③若已知f(x)在区间I上的单调性,区间I中含有参数时,可先求出f(x)的单调区间,则I是其单调区间的子集.10.利用导数研究函数的极值与最值(1)求函数的极值的一般步骤①确定函数的定义域;②解方程f′(x)=0;③判断f′(x)在方程f′(x)=0的根x0附近两侧的符号变化:若左正右负,则x0为极 值点;若左负右正,则x0为极 值点;若不变号,则x0不是极值点.(2)求函数f(x)在区间[a,b]上的最值的一般步骤①求函数y=f(x)在(a,b)内的极值;②比较函数y=f(x)的各极值与端点处的函数值f(a),f(b)的大小,最大的一个是最大值,最小的一个是最小值. 1.解决函数问题时要注意函数的定义域,要树立定义域优先原则.2.解决分段函数问题时,要注意与解析式对应的自变量的取值范围.3.求函数单调区间时,多个单调区间之间不能用符号“∪”和“或”连接,可用“和”连接或用“,”隔开.单调区间必须是“区间”,而不能用集合或不等式代替.4.判断函数的奇偶性,要注意定义域必须关于原点对称,有时还要对函数式化简整理,但必须注意使定义域不受影响.5.准确理解基本初等函数的定义和性质.如函数y=ax(a>0,a≠1)的单调性容易忽视对a的取值进行讨论,忽视ax>0;对数函数y=logax(a>0,a≠1)容易忽视真数与底数的限制条件.6.易混淆函数的零点和函数图象与x轴的交点,不能把函数零点、方程的解、不等式解集的端点值进行准确互化.7.已知可导函数f(x)在(a,b)上单调递增(减),则f′(x)≥0(≤0)对∀x∈(a,b)恒成立,不能漏掉“=”,且需验证“=”不能恒成立;已知可导函数f(x)的单调递增(减)区间为(a,b),则f′(x)>0(<0)的解集为(a,b).8.f′(x)=0的解不一定是函数f(x)的极值点.一定要检验在x=x0的两侧f′(x)的符号是否发生变化,若变化,则为极值点;若不变化,则不是极值点.
相关试卷
这是一份高中数学高考39第一部分 板块四 回扣7 解析几何,共5页。试卷主要包含了直线方程的五种形式,直线的两种位置关系,三种距离公式,圆的方程的两种形式,直线与圆、圆与圆的位置关系,解决范围、最值问题的常用方法,定点问题的思路,求解定值问题的两大途径等内容,欢迎下载使用。
这是一份高中数学高考37第一部分 板块四 回扣5 立体几何,共3页。试卷主要包含了三视图,柱、锥、台、球体的表面积和体积,几种角的范围等内容,欢迎下载使用。
这是一份高中数学高考35第一部分 板块四 回扣3 三角函数、三角恒等变换与解三角形,共5页。试卷主要包含了终边相同角的表示,几种特殊位置的角的集合,1弧度的角,正角、负角和零角的弧度数,角度制与弧度制的换算,利用单位圆定义任意角的三角函数,同角三角函数的基本关系,三种三角函数的性质等内容,欢迎下载使用。