高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十五) 导数与函数的单调性 Word版含答案
展开课时达标检测(十五) 导数与函数的单调性
1.函数f(x)=ex-ex,x∈R的单调递增区间是( )
A.(0,+∞) B.(-∞,0)
C.(-∞,1) D.(1,+∞)
解析:选D 由题意知,f′(x)=ex-e,令f′(x)>0,解得x>1,故选D.
2.已知函数f(x)=x3+ax+4,则“a>0”是“f(x)在R上单调递增”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选A f′(x)=x2+a,当a>0时,f′(x)>0,即a>0时,f(x)在R上单调递增,由f(x)在R上单调递增,可得a≥0.故“a>0”是“f(x)在R上单调递增”的充分不必要条件.
3.已知函数f(x)的导函数f′(x)=ax2+bx+c的图象如图所示,则f(x)的图象可能是( )
解析:选D 当x<0时,由导函数f′(x)=ax2+bx+c<0,知相应的函数f(x)在该区间内单调递减;当x>0时,由导函数f′(x)=ax2+bx+c的图象可知,导函数在区间(0,x1)内的值是大于0的,则在此区间内函数f(x)单调递增.只有D选项符合题意.
4.若函数f(x)=sin x+ax为R上的减函数,则实数a的取值范围是________.
解析:∵f′(x)=cos x+a,由题意可知,f′(x)≤0对任意的x∈R都成立,∴a≤-1,故实数a的取值范围是(-∞,-1].
答案:(-∞,-1]
5.已知函数f(x)的导函数为f′(x)=5+cos x,x∈(-1,1),且f(0)=0,如果f(1-x)+f(1-x2)<0,则实数x的取值范围为________.
解析:∵导函数f′(x)是偶函数,且f(0)=0,∴原函数f(x)是奇函数,∴所求不等式变形为f(1-x)<f(x2-1),∵导函数值恒大于0,∴原函数在定义域上单调递增,又f(x)的定义域为(-1,1),∴-1<1-x<x2-1<1,解得1<x<,∴实数x的取值范围是(1,).
答案:(1,)
一、选择题
1.已知函数f(x)=x2-5x+2ln x,则函数f(x)的单调递增区间是( )
A.和(1,+∞) B.(0,1)和(2,+∞)
C.和(2,+∞) D.(1,2)
解析:选C 函数f(x)=x2-5x+2ln x的定义域是(0,+∞),令f′(x)=2x-5+==>0,解得0<x<或x>2,故函数f(x)的单调递增区间是,(2,+∞).
2.若函数f(x)=x3-tx2+3x在区间上单调递减,则实数t的取值范围是( )
A. B.
C. D.
解析:选C f′(x)=3x2-2tx+3,由于f(x)在区间上单调递减,则有f′(x)≤0在上恒成立,
即3x2-2tx+3≤0在上恒成立,则t≥在上恒成立,因为y=在上单调递增,所以t≥=,故选C.
3.已知函数f(x)=x3+bx2+cx+d的图象如图所示,则函数y=log2x2+bx+的单调递减区间为( )
A. B. D.(-∞,-2)
解析:选D 因为f(x)=x3+bx2+cx+d,所以f′(x)=3x2+2bx+c,由图可知f′(-2)=f′(3)=0,所以解得令g(x)=x2+bx+,则g(x)=x2-x-6,g′(x)=2x-1,由g(x)=x2-x-6>0,解得x<-2或x>3.当x<时,g′(x)<0,所以g(x)=x2-x-6在(-∞,-2)上为减函数,所以函数y=log2的单调递减区间为(-∞,-2).
4.(2017·甘肃诊断考试)函数f(x)在定义域R内可导,若f(x)=f(2-x),且当x∈(-∞,1)时,(x-1)f′(x)<0,设a=f(0),b=f,c=f(3),则( )
A.a<b<c B.c<b<a
C.c<a<b D.b<c<a
解析:选C 因为当x∈(-∞,1)时,(x-1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(-∞,1)上是单调递增函数,所以a=f(0)<f=b,又f(x)=f(2-x),所以c=f(3)=f(-1),所以c=f(-1)<f(0)=a,所以c<a<b,故选C.
5.若函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,则f(x)在下列区间上单调递增的是( )
A.(-2,0) B.(0,1)
C.(1,+∞) D.(-∞,-2)
解析:选D 由题意知,f′(x)=1-,∵函数f(x)=x+(b∈R)的导函数在区间(1,2)上有零点,∴当1-=0时,b=x2,又x∈(1,2),∴b∈(1,4).令f′(x)>0,解得x<-或x>,即f(x)的单调递增区间为(-∞,-),(,+∞),∵b∈(1,4),∴(-∞,-2)符合题意,故选D.
6.已知y=f(x)为(0,+∞)上的可导函数,且有f′(x)+>0,则对于任意的a,b∈(0,+∞),当a>b时,有( )
A.af(a)<bf(b) B.af(a)>bf(b)
C.af(b)>bf(a) D.af(b)<bf(a)
解析:选B 由f′(x)+>0得>0,即>0,即′x>0.∵x>0,∴′>0,即函数y=xf(x)为增函数,由a,b∈(0,+∞)且a>b,得af(a)>bf(b),故选B.
二、填空题
7.若幂函数f(x)的图象过点,则函数g(x)=exf(x)的单调递减区间为________.
解析:设幂函数为f(x)=xα,因为图象过点,所以=α,α=2,所以f(x)=x2,故g(x)=exx2,令g′(x)=exx2+2exx=ex(x2+2x)<0,得-2<x<0,故函数g(x)的单调递减区间为(-2,0).
答案:(-2,0)
8.已知函数f(x)=x2+2ax-ln x,若f(x)在区间上是增函数,则实数a的取值范围为________.
解析:f′(x)=x+2a-≥0在上恒成立,即2a≥-x+在上恒成立,∵max=,∴2a≥,即a≥.
答案:
9.已知R上可导函数f(x)的图象如图所示,则不等式(x2-2x-3)·f′(x)>0的解集为________.
解析:由题图可知,
不等式(x2-2x-3)f′(x)>0等价于或解得x∈(-∞,-1)∪(3,+∞)∪(-1,1).
答案:(-∞,-1)∪(3,+∞)∪(-1,1)
10.若函数f(x)=-x3+x2+2ax在上存在单调递增区间,则a的取值范围是________.
解析:对f(x)求导,得f′(x)=-x2+x+2a=-2++2a.当x∈时,f′(x)的最大值为f′=+2a.令+2a>0,解得a>-.所以a的取值范围是.
答案:
三、解答题
11.已知函数f(x)=x-+1-aln x,a>0.讨论f(x)的单调性.
解:由题意知,f(x)的定义域是(0,+∞),导函数f′(x)=1+-=.
设g(x)=x2-ax+2,二次方程g(x)=0的判别式Δ=a2-8.
①当Δ<0,即0<a<2时,对一切x>0都有f′(x)>0.
此时f(x)是(0,+∞)上的单调递增函数.
②当Δ=0,即a=2 时,仅对x=有f′(x)=0,对其余的x>0都有f′(x)>0.此时f(x)是(0,+∞)上的单调递增函数.
③当Δ>0,即a>2时,方程g(x)=0有两个不同的实根x1=,x2=,0<x1<x2.
所以f(x),f′(x)随x的变化情况如下表:
x | (0,x1) | x1 | (x1,x2) | x2 | (x2,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | | 极大值 | | 极小值 | |
此时f(x)在上单调递增,在,上单调递减,在上单调递增.
12.(2017·郑州质检)已知函数f(x)=aln x-ax-3(a∈R).
(1)求函数f(x)的单调区间;
(2)若函数y=f(x)的图象在点(2,f(2))处的切线的倾斜角为45°,对于任意的t∈,函数g(x)=x3+x2·在区间(t,3)上总不是单调函数,求m的取值范围.
解:(1)函数f(x)的定义域为(0,+∞),且f′(x)=.当a>0时,f(x)的增区间为(0,1),减区间为(1,+∞);
当a<0时,f(x)的增区间为(1,+∞),减区间为(0,1);
当a=0时,f(x)不是单调函数.
(2)由(1)及题意得f′(2)=-=1,即a=-2,
∴f(x)=-2ln x+2x-3,f′(x)=.
∴g(x)=x3+x2-2x,
∴g′(x)=3x2+(m+4)x-2.
∵g(x)在区间(t,3)上总不是单调函数,
即g′(x)=0在区间(t,3)上有变号零点.
由于g′(0)=-2,∴
g′(t)<0,即3t2+(m+4)t-2<0对任意t∈恒成立,
由于g′(0)<0,故只要g′(1)<0且g′(2)<0,
即m<-5且m<-9,
即m<-9;
由g′(3)>0,得m>-.
所以-<m<-9.
即实数m的取值范围是.
高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十四) 变化率与导数、导数的计算 Word版含答案: 这是一份高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十四) 变化率与导数、导数的计算 Word版含答案,共5页。试卷主要包含了函数f=2的导数为,给出定义等内容,欢迎下载使用。
高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十七) 导数与函数的综合问题 Word版含答案: 这是一份高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十七) 导数与函数的综合问题 Word版含答案,共5页。试卷主要包含了全员必做题,冲刺满分题等内容,欢迎下载使用。
高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十六) 导数与函数的极值、最值 Word版含答案: 这是一份高中数学高考2018高考数学(理)大一轮复习习题:第三章 导数及其应用 课时达标检测(十六) 导数与函数的极值、最值 Word版含答案,共6页。试卷主要包含了全员必做题,重点选做题,冲刺满分题等内容,欢迎下载使用。