中考数学二轮复习几何专项复习专题13 几何最值之瓜豆原理知识精讲
展开几何最值之瓜豆原理知识精讲
初中数学有一类动态问题叫做主从联动,这类问题应该说是非常出题,好多优秀老师都在研究它,原因是它在很多名校模考的时候经常出现,有的老师叫他瓜豆原理,个人理解可能是种瓜得瓜种豆得豆的意思吧,主动点运动的轨迹是什么,则从动点的轨迹就是什么。也有的老师叫他旋转相似,或者手拉手。我感觉这类问题在解答的时候需要有轨迹思想,就是先要明确主动点的轨迹,然后要搞清楚主动点和从动点的关系,进而确定从动点的轨迹来解决问题,但在解答问题时,要符合解不超纲的原则,所以最后解决问题还是用到了旋转相似的知识,也就是动态手拉手模型,下面整理一些题目来集中训练一下这类题目,希望对你能有所帮助.
涉及的知识和方法:
知识:①相似;②三角形的两边之和大于第三边;③点到直线之间的距离垂线段最短;④点到圆上点共线有最值。
方法:第一步:找主动点的轨迹 ;第二步:找从动点与主动点的关系;第三步:找主动点的起点和终点;第四步:通过相似确定从动点的轨迹,第五步:根据轨迹确定点线、点圆最值
在此类题目中,题目或许先描述的是主动点P,但最终问题问的可以是另一点Q(从动点),根据P、Q之间存在某种联系,从P点出发探讨Q点运动轨迹并求出最值。
一、轨迹之圆篇
例1:如图,P是圆O上一个动点,A为定点,连接AP,Q为AP中点.
考虑:当点P在圆O上运动时,Q点轨迹是?
分析观察动图可知点Q轨迹是个圆,而我们还需确定的是此圆与圆O有什么关系?
考虑到Q点始终为AP中点,连接AO,取AO中点M,则M点即为Q点轨迹圆圆心,半径MQ是OP一半,任意时刻,均有△AMQ∽△AOP,QM:PO=AQ:AP=1:2.
结论:确定Q点轨迹圆即确定其圆心与半径,
由A、Q、P始终共线可得:A、M、O三点共线,
由Q为AP中点可得:AM=1/2AO.
Q点轨迹相当于是P点轨迹成比例缩放.
根据动点之间的相对位置关系分析圆心的相对位置关系;
根据动点之间的数量关系分析轨迹圆半径数量关系.
例2:如图,P是圆O上一个动点,A为定点,连接AP,作AQ⊥AP且AQ=AP.
考虑:当点P在圆O上运动时,Q点轨迹是?
分析Q点轨迹是个圆,可理解为将AP绕点A逆时针旋转90°得AQ,故Q点轨迹与P点轨迹都是圆.接下来确定圆心与半径.
考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
例3:如图,△APQ是直角三角形,∠PAQ=90°且AP=2AQ,当P在圆O运动时,Q点轨迹是?
分析考虑AP⊥AQ,可得Q点轨迹圆圆心M满足AM⊥AO;
考虑AP:AQ=2:1,可得Q点轨迹圆圆心M满足AO:AM=2:1.
即可确定圆M位置,任意时刻均有△APO∽△AQM,且相似比为2.
模型总结
为了便于区分动点P、Q,可称点P为“主动点”,点Q为“从动点”.
此类问题的必要条件:两个定量
主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
结论(1)主、从动点与定点连线的夹角等于两圆心与定点连线的夹角:
∠PAQ=∠OAM;
(2)主、从动点与定点的距离之比等于两圆心到定点的距离之比:
AP:AQ=AO:AM,也等于两圆半径之比.
按以上两点即可确定从动点轨迹圆,Q与P的关系相当于旋转+伸缩.
古人云:种瓜得瓜,种豆得豆.“种”圆得圆,“种”线得线,谓之“瓜豆原理”.
思考1:如图,P是圆O上一个动点,A为定点,连接AP,以AP为一边作等边△APQ.
考虑:当点P在圆O上运动时,Q点轨迹是?
分析Q点满足(1)∠PAQ=60°;(2)AP=AQ,故Q点轨迹是个圆:
考虑∠PAQ=60°,可得Q点轨迹圆圆心M满足∠MAO=60°;
考虑AP=AQ,可得Q点轨迹圆圆心M满足AM=AO,且可得半径MQ=PO.
即可确定圆M位置,任意时刻均有△APO≌△AQM.
小结可以理解AQ由AP旋转得来,故圆M亦由圆O旋转得来,旋转角度与缩放比例均等于AP与AQ的位置和数量关系.
思考2如图,P是圆O上一个动点,A为定点,连接AP,以AP为斜边作等腰直角△APQ.
考虑:当点P在圆O上运动时,如何作出Q点轨迹?
分析Q点满足(1)∠PAQ=45°;(2)AP:AQ=:1,故Q点轨迹是个圆.
连接AO,构造∠OAM=45°且AO:AM=:1.M点即为Q点轨迹圆圆心,此时任意时刻均有△AOP∽△AMQ.即可确定点Q的轨迹圆.
二、轨迹之线段篇
引例:如图,P是直线BC上一动点,连接AP,取AP中点Q,当点P在BC上运动时,Q点轨迹是?
分析当P点轨迹是直线时,Q点轨迹也是一条直线.
可以这样理解:分别过A、Q向BC作垂线,垂足分别为M、N,在运动过程中,因为AP=2AQ,所以QN始终为AM的一半,即Q点到BC的距离是定值,故Q点轨迹是一条直线.
引例如图,△APQ是等腰直角三角形,∠PAQ=90°且AP=AQ,当点P在直线BC上运动时,求Q点轨迹?
分析当AP与AQ夹角固定且AP:AQ为定值的话,P、Q轨迹是同一种图形.
当确定轨迹是线段的时候,可以任取两个时刻的Q点的位置,连线即可,比如Q点的起始位置和终点位置,连接即得Q点轨迹线段.
模型总结
必要条件:
主动点、从动点与定点连线的夹角是定量(∠PAQ是定值);
主动点、从动点到定点的距离之比是定量(AP:AQ是定值).
结论:
P、Q两点轨迹所在直线的夹角等于∠PAQ(当∠PAQ≤90°时,∠PAQ等于MN与BC夹角)
P、Q两点轨迹长度之比等于AP:AQ(由△ABC∽△AMN,可得AP:AQ=BC:MN)
中考数学几何专项练习:动点运动路径之瓜豆原理: 这是一份中考数学几何专项练习:动点运动路径之瓜豆原理,文件包含中考数学几何专项练习动点运动路径之瓜豆原理原卷docx、中考数学几何专项练习动点运动路径之瓜豆原理解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
2023年中考数学常见几何模型全归纳 专题13 最值模型-瓜豆原理: 这是一份2023年中考数学常见几何模型全归纳 专题13 最值模型-瓜豆原理,文件包含专题13最值模型-瓜豆原理解析版docx、专题13最值模型-瓜豆原理原卷版docx等2份试卷配套教学资源,其中试卷共53页, 欢迎下载使用。
中考经典几何模型与最值问题 专题19 瓜豆原理中动点轨迹圆或圆弧型最值问题: 这是一份中考经典几何模型与最值问题 专题19 瓜豆原理中动点轨迹圆或圆弧型最值问题,文件包含专题19瓜豆原理中动点轨迹圆或圆弧型最值问题教师版docx、专题19瓜豆原理中动点轨迹圆或圆弧型最值问题学生版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。