高中数学高考37第六章 数列与数学归纳法 高考专题突破3 第1课时 等差、等比数列与数列求和
展开
这是一份高中数学高考37第六章 数列与数学归纳法 高考专题突破3 第1课时 等差、等比数列与数列求和,共7页。
高考专题突破三 高考中的数列问题第1课时 等差、等比数列与数列求和题型一 等差数列、等比数列的交汇例1 记Sn为等比数列{an}的前n项和.已知S2=2,S3=-6.(1)求{an}的通项公式;(2)求Sn,并判断Sn+1,Sn,Sn+2是否成等差数列. 跟踪训练1 (2019·鞍山模拟)已知公差不为0的等差数列{an}的前n项和为Sn,S1+1,S3,S4成等差数列,且a1,a2,a5成等比数列.(1)求数列{an}的通项公式;(2)若S4,S6,Sn成等比数列,求n及此等比数列的公比. 题型二 新数列问题例2 对于数列{xn},若对任意n∈N+,都 有xn+2-xn+1>xn+1-xn成立,则称数列{xn}为“增差数列”.设an=,若数列a4,a5,a6,…,an(n≥4,n∈N+)是“增差数列”,则实数t的取值范围是________.跟踪训练2 (1)定义“等积数列”,在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积.已知数列{an}是等积数列且a1=2,前21项的和为62,则这个数列的公积为________.(2)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,8,13,….该数列的特点是:前两个数都是1,从第三个数起,每一个数都等于它前面两个数的和,人们把这样的一列数组成的数列称为“斐波那契数列”若{an}是“斐波那契数列”,则(a1a3-a)(a2a4-a)(a3a5-a)…·(a2 017·a2 019-a)的值为________. 题型三 数列的求和 命题点1 分组求和与并项求和例3 (2018·呼和浩特模拟)已知数列{an}是各项均为正数的等比数列,且a1+a2=2,a3+a4=32.(1)求数列{an}的通项公式;(2)设bn=a+log2an,求数列{bn}的前n项和Tn. 命题点2 错位相减法求和例4 (2018·大连模拟)已知数列{an}满足an≠0,a1=,an-an+1=2anan+1,n∈N+.(1)求证:是等差数列,并求出数列{an}的通项公式;(2)若数列{bn}满足bn=,求数列{bn}的前n项和Tn. 命题点3 裂项相消法求和例5 在数列{an}中,a1=4,nan+1-(n+1)an=2n2+2n.(1)求证:数列是等差数列;(2)求数列的前n项和Sn. 跟踪训练3 (1)已知数列{an}的前n项和为Sn,且a1=,an+1=an(n∈N+).①证明:数列是等比数列;②求数列{an}的通项公式与前n项和Sn. (2)已知正项数列{an}的前n项和为Sn,a1=1,且(t+1)Sn=a+3an+2(t∈R).①求数列{an}的通项公式;②若数列{bn}满足b1=1,bn+1-bn=an+1,求数列的前n项和Tn. 1.已知等差数列{an}的前n项和为Sn,且a3=7,a5+a7=26.(1)求an及Sn;(2)令bn=(n∈N+),求证:数列{bn}为等差数列. 2.(2018·包头模拟)在数列{an}和{bn}中,a1=1,an+1=an+2,b1=3,b2=7,等比数列{cn}满足cn=bn-an.(1)求数列{an}和{cn}的通项公式;(2)若b6=am,求m的值. 3.已知递增的等比数列{an}满足:a2+a3+a4=28,且a3+2是a2和a4的等差中项.(1)求数列{an}的通项公式;(2)若bn=,Sn=b1+b2+…+bn,求使Sn+n·2n+1>62成立的正整数n的最小值. 4.正项等差数列{an}满足a1=4,且a2,a4+2,2a7-8成等比数列,{an}的前n项和为Sn.(1)求数列{an}的通项公式;(2)令bn=,求数列{bn}的前n项和Tn. 5.数列{an}的前n项和为Sn,已知a1=1,(2n-1)an+1=(2n+3)Sn(n=1,2,3,…).(1)证明:数列是等比数列;(2)求数列{Sn}的前n项和Tn. 6.设等比数列a1,a2,a3,a4的公比为q,等差数列b1,b2,b3,b4的公差为d,且q≠1,d≠0.记ci=ai+bi (i=1,2,3,4).(1)求证:数列c1,c2,c3不是等差数列;(2)设a1=1,q=2.若数列c1,c2,c3是等比数列,求b2关于d的函数关系式及其定义域;(3)数列c1,c2,c3,c4能否为等比数列?并说明理由.
相关课件
这是一份新高考版高考数学二轮复习(新高考版) 第1部分 专题突破 专题3 第1讲 等差数列、等比数列课件PPT,共60页。PPT课件主要包含了专题强化练等内容,欢迎下载使用。
这是一份高中数学高考板块2 核心考点突破拿高分 专题2 第1讲 数列、等差数列与等比数列(小题)(1)课件PPT,共48页。PPT课件主要包含了内容索引,热点分类突破,真题押题精练,押题预测,真题体验等内容,欢迎下载使用。
这是一份高中数学高考38第六章 数列与数学归纳法 高考专题突破3 第2课时 数列的综合问题课件PPT,共44页。PPT课件主要包含了内容索引,课时作业,题型分类深度剖析,题型一数列与函数,题型二数列与不等式等内容,欢迎下载使用。