高中数学高考2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)(1)
展开
这是一份高中数学高考2018年普通高等学校招生全国统一考试数学试题理(全国卷2,含答案)(1),共9页。试卷主要包含了作答时,将答案写在答题卡上,已知向量,满足,,则,在中,,,,则,若在是减函数,则的最大值是等内容,欢迎下载使用。
2018年普通高等学校招生全国统一考试数学试题 理(全国卷2)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.作答时,将答案写在答题卡上。写在本试卷及草稿纸上无效。3.考试结束后,将本试卷和答题卡一并交回。 一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。1.A. B. C. D.2.已知集合,则中元素的个数为 A.9 B.8 C.5 D.43.函数的图像大致为 4.已知向量,满足,,则A.4 B.3 C.2 D.05.双曲线的离心率为,则其渐近线方程为A. B. C. D.6.在中,,,,则A. B. C. D.7.为计算,设计了右侧的程序框图,则在空白框中应填入A. B. C. D. 8.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A. B. C. D.9.在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.10.若在是减函数,则的最大值是A. B. C. D.11.已知是定义域为的奇函数,满足.若,则A. B.0 C.2 D.5012.已知,是椭圆的左,右焦点,是的左顶点,点在过且斜率为的直线上,为等腰三角形,,则的离心率为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.曲线在点处的切线方程为__________.14.若满足约束条件 则的最大值为__________.15.已知,,则__________.16.已知圆锥的顶点为,母线,所成角的余弦值为,与圆锥底面所成角为45°,若的面积为,则该圆锥的侧面积为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23为选考题,考生根据要求作答。(一)必考题:共60分。17.(12分)记为等差数列的前项和,已知,.(1)求的通项公式;(2)求,并求的最小值.18.(12分)下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由. 19.(12分)设抛物线的焦点为,过且斜率为的直线与交于,两点,.(1)求的方程;(2)求过点,且与的准线相切的圆的方程.20.(12分)如图,在三棱锥中,,,为的中点.(1)证明:平面;(2)若点在棱上,且二面角为,求与平面所成角的正弦值.21.(12分)已知函数.(1)若,证明:当时,;(2)若在只有一个零点,求.(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。22.[选修4-4:坐标系与参数方程](10分)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).(1)求和的直角坐标方程;(2)若曲线截直线所得线段的中点坐标为,求的斜率.23.[选修4-5:不等式选讲](10分)设函数.(1)当时,求不等式的解集;(2)若,求的取值范围. 参考答案一、选择题1.D 2.A 3.B 4.B 5.A 6.A7.B 8.C 9.C 10.A 11.C 12.D二、填空题13. 14.9 15. 16.三、解答题17. (12分)解:(1)设的公差为d,由题意得.由得d=2.所以的通项公式为.(2)由(1)得.所以当n=4时,取得最小值,最小值为−16.18.(12分)解:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为(亿元).利用模型②,该地区2018年的环境基础设施投资额的预测值为(亿元).(2)利用模型②得到的预测值更可靠.理由如下:(ⅰ)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线上下.这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.(ⅱ)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理.说明利用模型②得到的预测值更可靠.以上给出了2种理由,考生答出其中任意一种或其他合理理由均可得分.19.(12分)解:(1)由题意得,l的方程为.设,由得.,故.所以.由题设知,解得(舍去),.因此l的方程为.(2)由(1)得AB的中点坐标为,所以AB的垂直平分线方程为,即.设所求圆的圆心坐标为,则解得或因此所求圆的方程为或.20.(12分)解:(1)因为,为的中点,所以,且.连结.因为,所以为等腰直角三角形,且,.由知.由知平面.(2)如图,以为坐标原点,的方向为轴正方向,建立空间直角坐标系.由已知得取平面的法向量.设,则.设平面的法向量为.由得,可取,所以.由已知得.所以.解得(舍去),.所以.又,所以.所以与平面所成角的正弦值为.21.(12分)【解析】(1)当时,等价于.设函数,则.当时,,所以在单调递减.而,故当时,,即.(2)设函数.在只有一个零点当且仅当在只有一个零点.(i)当时,,没有零点;(ii)当时,.当时,;当时,.所以在单调递减,在单调递增.故是在的最小值.①若,即,在没有零点;②若,即,在只有一个零点;③若,即,由于,所以在有一个零点,由(1)知,当时,,所以.故在有一个零点,因此在有两个零点.综上,在只有一个零点时,.22.[选修4-4:坐标系与参数方程](10分)【解析】(1)曲线的直角坐标方程为.当时,的直角坐标方程为,当时,的直角坐标方程为.(2)将的参数方程代入的直角坐标方程,整理得关于的方程.①因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.又由①得,故,于是直线的斜率.23.[选修4-5:不等式选讲](10分)【解析】(1)当时,可得的解集为.(2)等价于.而,且当时等号成立.故等价于.由可得或,所以的取值范围是.
相关试卷
这是一份高中数学高考2019年普通高等学校招生全国统一考试文科数学(全国卷Ⅱ)(含答案)(1),共9页。
这是一份高中数学高考2019年普通高等学校招生全国统一考试理科数学(全国卷Ⅰ)(含答案)(1),共11页。试卷主要包含了函数f=在的图像大致为,记为等差数列的前n项和等内容,欢迎下载使用。
这是一份高中数学高考2018年普通高等学校招生全国统一考试数学试题文(全国卷3,含答案)(1),共8页。试卷主要包含了若,则,函数的最小正周期为,函数的图像大致为,已知双曲线等内容,欢迎下载使用。