高中数学高考2018年普通高等学校招生全国统一考试数学试题理(天津卷,含答案)(1)
展开
这是一份高中数学高考2018年普通高等学校招生全国统一考试数学试题理(天津卷,含答案)(1),共12页。
2018年普通高等学校招生全国统一考试数学试题 理(天津卷)本试卷分为第I卷(选择题)和第II卷(非选择题)两部分,共150分,考试用时120分钟。第I卷1至2页,第II卷3至5页。 答卷前,考生务必将自己的姓名、准考号填写在答题卡上,并在规定位置粘贴考试条形码。答卷时,考生务必将答案涂写在答题卡上,答在试卷上的无效。考试结束后,将本试卷和答题卡一并交回。 祝各位考生考试顺利!第I卷注意事项:1.每小题选出答案后,用铅笔将答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其他答案标号。2.本卷共8小题,每小题5分,共40分。参考公式:如果事件A,B互斥,那么 .如果事件A,B相互独立,那么 .棱柱的体积公式,其中表示棱柱的底面面积,表示棱柱的高.棱锥的体积公式,其中表示棱锥的底面面积,表示棱锥的高.一. 选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设全集为R,集合,,则 (A) (B) (C) (D) (2)设变量x,y满足约束条件 则目标函数的最大值为 (A) 6 (B) 19 (C) 21 (D) 45 (3)阅读右边的程序框图,运行相应的程序,若输入N的值为20,则输出T的值为 (A) 1 (B) 2 (C) 3 (D) 4(4)设,则“”是“”的 (A)充分而不必要条件(B)必要而不重复条件(C)充要条件(D)既不充分也不必要条件(5)已知,,,则a,b,c的大小关系为 (A) (B) (C) (D) (6)将函数的图象向右平移个单位长度,所得图象对应的函数 (A)在区间上单调递增 (B)在区间上单调递减(C)在区间上单调递增 (D)在区间上单调递减(7)已知双曲线的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点. 设A,B到双曲线同一条渐近线的距离分别为和,且,则双曲线的方程为 (A) (B) (C) (D) (8)如图,在平面四边形ABCD中,,,,. 若点E为边CD上的动点,则的最小值为 (A) (B) (C) (D) 第Ⅱ卷注意事项:1. 用黑色墨水的钢笔或签字笔将答案写在答题卡上。2. 本卷共12小题,共110分。二. 填空题:本大题共6小题,每小题5分,共30分。 (9) i是虚数单位,复数 .(10) 在的展开式中,的系数为 .(11) 已知正方体的棱长为1,除面外,该正方体其余各面的中心分别为点E,F,G,H,M(如图),则四棱锥的体积为 .(12)已知圆的圆心为C,直线(为参数)与该圆相交于A,B两点,则的面积为 . (13)已知,且,则的最小值为 . (14)已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是 . 三.解答题:本大题共6小题,共80分. 解答应写出文字说明,证明过程或演算步骤.(15)(本小题满分13分)在中,内角A,B,C所对的边分别为a,b,c.已知.(I)求角B的大小;(II)设a=2,c=3,求b和的值. (16)(本小题满分13分) 已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16. 现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望; (ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率. (17)(本小题满分13分) 如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.(I)若M为CF的中点,N为EG的中点,求证:;(II)求二面角的正弦值; (III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长. (18)(本小题满分13分) 设是等比数列,公比大于0,其前n项和为,是等差数列. 已知,,,.(I)求和的通项公式;(II)设数列的前n项和为, (i)求; (ii)证明. (19)(本小题满分14分)设椭圆(a>b>0)的左焦点为F,上顶点为B. 已知椭圆的离心率为,点A的坐标为,且.(I)求椭圆的方程;(II)设直线l:与椭圆在第一象限的交点为P,且l与直线AB交于点Q. 若(O为原点) ,求k的值. (20)(本小题满分14分)已知函数,,其中a>1.(I)求函数的单调区间;(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线. 参考答案:一、选择题:本题考查基本知识和基本运算.每小题5分,满分40分.(1)B (2)C (3)B (4)A(5)D (6)A (7)C (8)A二、填空题:本题考查基本知识和基本运算.每小题5分,满分30分.(9)4–i (10) (11) (12) (13) (14) 三、解答题(15)本小题主要考查同角三角函数的基本关系,两角差的正弦与余弦公式,二倍角的正弦与余弦公式,以及正弦定理、余弦定理等基础知识,考查运算求解能力.满分13分.(Ⅰ)解:在△ABC中,由正弦定理,可得,又由,得,即,可得.又因为,可得B=.(Ⅱ)解:在△ABC中,由余弦定理及a=2,c=3,B=,有,故b=.由,可得.因为a<c,故.因此, 所以, (16)本小题主要考查随机抽样、离散型随机变量的分布列与数学期望、互斥事件的概率加法公式等基础知识.考查运用概率知识解决简单实际问题的能力.满分13分.(Ⅰ)解:由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7人,因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)解:随机变量X的所有可能取值为0,1,2,3.P(X=k)=(k=0,1,2,3).所以,随机变量X的分布列为 X0123P随机变量X的数学期望.(ii)解:设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,则A=B∪C,且B与C互斥,由(i)知,P(B)=P(X=2),P(C)=P(X=1),故P(A)=P(B∪C)=P(X=2)+P(X=1)=.所以,事件A发生的概率为.(17)本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D为原点,分别以,,的方向为x轴,y轴,z轴的正方向的空间直角坐标系(如图),可得D(0,0,0),A(2,0,0),B(1,2,0),C(0,2,0),E(2,0,2),F(0,1,2),G(0,0,2),M(0,,1),N(1,0,2).(Ⅰ)证明:依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则 即 不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)解:依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则 即 不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则 即 不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)解:设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.(18)本小题主要考查等差数列的通项公式,等比数列的通项公式及前n项和公式等基础知识.考查等差数列求和的基本方法和运算求解能力.满分13分.(I)解:设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而 故 所以数列的通项公式为,数列的通项公式为(II)(i)由(I),有,故.(ii)证明:因为,所以,.(19)本小题主要考查椭圆的标准方程和几何性质、直线方程等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.满分14分.(Ⅰ)解:设椭圆的焦距为2c,由已知知,又由a2=b2+c2,可得2a=3b.由已知可得,,,由,可得ab=6,从而a=3,b=2.所以,椭圆的方程为.(Ⅱ)解:设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故.又因为,而∠OAB=,故.由,可得5y1=9y2.由方程组消去x,可得.易知直线AB的方程为x+y–2=0,由方程组消去x,可得.由5y1=9y2,可得5(k+1)=,两边平方,整理得,解得,或.所以,k的值为 (20)本小题主要考查导数的运算、导数的几何意义、运用导数研究指数函数与对数函数的性质等基础知识和方法.考查函数与方程思想、化归思想.考查抽象概括能力、综合分析问题和解决问题的能力.满分14分.(I)解:由已知,,有.令,解得x=0.由a>1,可知当x变化时,,的变化情况如下表:x00+极小值所以函数的单调递减区间,单调递增区间为.(II)证明:由,可得曲线在点处的切线斜率为.由,可得曲线在点处的切线斜率为.因为这两条切线平行,故有,即.两边取以a为底的对数,得,所以.(III)证明:曲线在点处的切线l1:.曲线在点处的切线l2:.要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,只需证明当时,存在,,使得l1和l2重合.即只需证明当时,方程组有解,由①得,代入②,得. ③因此,只需证明当时,关于x1的方程③有实数解.设函数,即要证明当时,函数存在零点.,可知时,;时,单调递减,又,,故存在唯一的x0,且x0>0,使得,即.由此可得在上单调递增,在上单调递减. 在处取得极大值.因为,故,所以.下面证明存在实数t,使得.由(I)可得,当时,有,所以存在实数t,使得因此,当时,存在,使得.所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.
相关试卷
这是一份高中数学高考2019年普通高等学校招生全国统一考试文科数学(天津卷)(含答案)(1),共10页。
这是一份高中数学高考2019年普通高等学校招生全国统一考试理科数学(天津卷)(含答案)(1),共10页。试卷主要包含了设,则“”是“”的,已知,,,则的大小关系为等内容,欢迎下载使用。
这是一份高中数学高考2018年普通高等学校招生全国统一考试数学试题文(天津卷,含答案)(1),共9页。