


高中数学高考2021年高考数学(理)2月模拟评估卷(二)(全国3卷)(原卷版)
展开
这是一份高中数学高考2021年高考数学(理)2月模拟评估卷(二)(全国3卷)(原卷版),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
2021年高考数学(理)2月模拟评估卷(二)(全国3卷)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分满分150分.考试时间120分钟第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集,,,则( )A. B. C. D.2.把函数的图象向左平移个单位长度,再把所得图象所有点的横坐标伸长到原来的2倍(纵坐标不变),所得函数图象的解析式为( )A. B. C. D.3.如图是一个正方体的表面展开图,则图中“0”在正方体中所在的面的对面上的是( )A.2 B.1 C.高 D.考4.甲乙两台机床同时生产一种零件,10天中,两台机床每天出的次品数分别是:甲0102203124乙2211121101,分别表示甲乙两组数据的平均数,,分别表示甲乙两组数据的方差,则下列选项正确的是( ).A., B.,C., D.,5.过点P(-1,1)作圆C:的两条切线,切点分别为点A、B,则四边形ACBP的面积为( )A. B.6 C. D.36.已知,且,则函数与的图象可能是( )A. B.C. D.7.下列选项叙述错误的是( )A.命题“若,则”的逆否命题是“若,则”B.若命题,则命题是或C.若为真命题,则p,q均为真命题D.“”是“”的充分不必要条件8.的展开式中的系数为( )A. B. C.10 D.209.意大利著名天文学家伽利略曾错误地猜测链条自然下垂时的形状是抛物线.直到1690年,雅各布·伯努利正式提出该问题为“悬链线”问题并向数学界征求答案.1691年他的弟弟约翰·伯努利和菜布尼兹、惠更斯三人各自都得到了正确答案,给出悬链线的数学表达式——双曲余弦函数:(为自然对数的底数).当,时,记,,,则,,的大小关系为( ).A. B. C. D.10.已知双曲线:(,)的上、下顶点分别为,,点在双曲线上(异于顶点),直线,的斜率乘积为,则双曲线的渐近线方程为( )A. B. C. D.11.在中,,边上的高为1,则面积的最小值为( )A. B. C. D.12.已知抛物线C方程为,F为其焦点,过点F的直线l与抛物线C交于A,B两点,且抛物线在A,B两点处的切线分别交x轴于P,Q两点,则的取值范围为( )A. B. C. D.二.填空题:本大题共4小题,每小题5分13. 设复数满足(为虚数单位),则复数________.14.已知向量,满足,则_________.15.一个口袋中装有6个小球,其中红球4个,白球2个.如果不放回地依次摸出2个小球,则在第1次摸出红球的条件下,第2次摸出红球的概率为________.16.在棱长为的正方体中,是的中点,是上的动点,则三棱锥外接球表面积的最小值为_______.三、解答题:共70分,解答应写出文字说明,证明过程和解题步骤.第17-21题为必考题.第22、23题为选考题.(一)、必考题:共60分17.(12分) 已知等差数列的前n项和为,且满足.(1)求数列的通项公式;(2)若数列满足,求数列的前项和.18.(12分) 如图,该多面体由底面为正方形的直四棱柱被截面所截而成,其中正方形的边长为,是线段上(不含端点)的动点,.(1)若为的中点,证明:平面;(2)若,求直线与平面所成角的正弦值.19.(12分) 2020年国庆节期间,我国高速公路继续执行“节假日高速公路免费政策”.某路桥公司为掌握国庆节期间车辆出行的高峰情况,在某高速公路收费站点记录了3日上午9:20~10:40这一时间段内通过的车辆数,统计发现这一时间段内共有600辆车通过该收费站点,它们通过该收费站点的时刻的频率分布直方图如下图所示,其中时间段9:20~9:40记作、9:40~10:00记作,10:00~10:20记作,10:20~10:40记作,例如:10点04分,记作时刻64.(1)估计这600辆车在9:20~10:40时间内通过该收费站点的时刻的平均值(同一组中的数据用该组区间的中点值代表);(2)为了对数据进行分析,现采用分层抽样的方法从这600辆车中抽取10辆,再从这10辆车随机抽取4辆,设抽到的4辆车中,在9:20~10:00之间通过的车辆数为X,求X的分布列;(3)根据大数据分析,车辆在每天通过该收费站点的时刻T服从正态分布,其中可用3日数据中的600辆车在9:20~10:40之间通过该收费站点的时刻的平均值近似代替,用样本的方差近似代替(同一组中的数据用该组区间的中点值代表).假如4日全天共有1000辆车通过该收费站点,估计在9:46~10:40之间通过的车辆数(结果保留到整数).附:若随机变量T服从正态分布,则,,.20.(12分) 已知圆,点P为圆C上的动点,过点P作x轴的垂线,垂足为Q,设D为PQ的中点,且D的轨迹为曲线E(PQD三点可重合).(1)求曲线E的方程;(2)不过原点的直线l与曲线E交于M、N两点,已知OM,直线l,ON的斜率、k、成等比数列,记以OM,ON为直径的圆的面积分别为S1,S2,试探究是否为定值,若是,求出此值;若不是,说明理由.21.(12分) 已知函数.(1)若在处取到极值,求的值及函数的单调区间;(2)若,求的取值范围.(二)、选考题:共10分. 请考生从22、23题中任选一题做答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程] (10分) 在平面直角坐标系中,直线的参数方程为(为参数),直线的参数方程为(为参数).(1)设与的夹角为,求;(2)设与轴的交点为,与轴的交点为,以为圆心,为半径作圆,以坐标原点为极点,轴正半轴为极轴建立极坐标系,求圆的极坐标方程.23.[选修4-5:不等式选讲] (10分)已知函数.(1)当时,求不等式的解集;(2)若不等式对于恒成立,求实数a的取值范围.
相关试卷
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(二)(全国3卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(二)(全国2卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
这是一份高中数学高考2021年高考数学(理)12月模拟评估卷(二)(全国1卷)(原卷版) (1),共6页。试卷主要包含了选择题,解答题等内容,欢迎下载使用。
