终身会员
搜索
    上传资料 赚现金
    (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)
    立即下载
    加入资料篮
    (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)01
    (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)02
    (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)

    展开
    这是一份(新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解),共16页。试卷主要包含了点与圆的位置关系,))等内容,欢迎下载使用。


    知识梳理
    1.圆的定义和圆的方程
    2.点与圆的位置关系
    平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:
    (1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;
    (2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;
    (3)|MC|常用结论
    1.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)(x-x2)+(y-y1)(y-y2)=0.
    2.圆心在过切点且与切线垂直的直线上.
    3.圆心在任一弦的垂直平分线上.
    思考辨析
    判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)确定圆的几何要素是圆心与半径.( √ )
    (2)圆x2+y2=a2的半径为a.( × )
    (3)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF>0.( √ )
    (4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则xeq \\al(2,0)+yeq \\al(2,0)+Dx0+Ey0+F>0.( √ )
    教材改编题
    1.圆x2+y2-4x+6y=0的圆心坐标和半径分别是( )
    A.(2,3),3 B.(-2,3),eq \r(3)
    C.(-2,-3),13 D.(2,-3),eq \r(13)
    答案 D
    解析 圆的方程可化为(x-2)2+(y+3)2=13,所以圆心坐标是(2,-3),半径r=eq \r(13).
    2.圆心为(1,1)且过原点的圆的方程是( )
    A.(x-1)2+(y-1)2=1B.(x+1)2+(y+1)2=1
    C.(x+1)2+(y+1)2=2D.(x-1)2+(y-1)2=2
    答案 D
    解析 因为圆心为(1,1)且过原点,所以该圆的半径r=eq \r(12+12)=eq \r(2),则该圆的方程为(x-1)2+(y-1)2=2.
    3.若坐标原点在圆(x-m)2+(y+m)2=4的内部,则实数m的取值范围为________.
    答案 (-eq \r(2),eq \r(2))
    解析 ∵原点(0,0)在圆(x-m)2+(y+m)2=4的内部,
    ∴(0-m)2+(0+m)2<4,
    解得-eq \r(2)题型一 圆的方程
    例1 (1)(2022·深圳模拟)已知圆M与直线3x-4y=0及3x-4y+10=0都相切,圆心在直线y=-x-4上,则圆M的方程为( )
    A.(x+3)2+(y-1)2=1B.(x-3)2+(y+1)2=1
    C.(x+3)2+(y+1)2=1D.(x-3)2+(y-1)2=1
    答案 C
    解析 到两直线3x-4y=0,3x-4y+10=0的距离都相等的直线方程为3x-4y+5=0,
    联立eq \b\lc\{\rc\ (\a\vs4\al\c1(3x-4y+5=0,,y=-x-4,))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=-3,,y=-1.))
    又两平行线间的距离为2,所以圆M的半径为1,从而圆M的方程为(x+3)2+(y+1)2=1.
    (2)已知圆的圆心在直线x-2y-3=0上,且过点A(2,-3),B(-2,-5),则圆的一般方程为________________.
    答案 x2+y2+2x+4y-5=0
    解析 方法一 设所求圆的标准方程为
    (x-a)2+(y-b)2=r2,
    由题意得eq \b\lc\{\rc\ (\a\vs4\al\c1(2-a2+-3-b2=r2,,-2-a2+-5-b2=r2,,a-2b-3=0,))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=-1,,b=-2,,r2=10,))
    故所求圆的方程为(x+1)2+(y+2)2=10,
    即x2+y2+2x+4y-5=0.
    方法二 线段AB的垂直平分线方程为2x+y+4=0,
    联立eq \b\lc\{\rc\ (\a\vs4\al\c1(2x+y+4=0,,x-2y-3=0,))
    得交点坐标O(-1,-2),
    又点O到点A的距离d=eq \r(10),
    所以圆的方程为(x+1)2+(y+2)2=10,
    即x2+y2+2x+4y-5=0.
    教师备选
    1.已知圆E经过三点A(0,1),B(2,0),C(0,-1),则圆E的标准方程为( )
    A.eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,2)))2+y2=eq \f(25,4)B.eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(3,4)))2+y2=eq \f(25,16)
    C.eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,4)))2+y2=eq \f(25,16)D.eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,4)))2+y2=eq \f(25,4)
    答案 C
    解析 方法一 (待定系数法)
    设圆E的一般方程为x2+y2+Dx+Ey+F=0(D2+E2-4F>0),
    则由题意得eq \b\lc\{\rc\ (\a\vs4\al\c1(1+E+F=0,,4+2D+F=0,,1-E+F=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(D=-\f(3,2),,E=0,,F=-1.))
    所以圆E的一般方程为x2+y2-eq \f(3,2)x-1=0,
    即eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,4)))2+y2=eq \f(25,16).
    方法二 (几何法)
    因为圆E经过点A(0,1),B(2,0),所以圆E的圆心在线段AB的垂直平分线y-eq \f(1,2)=2(x-1)上.
    由题意知圆E的圆心在x轴上,
    所以圆E的圆心坐标为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,4),0)).
    则圆E的半径为
    |EB|=eq \r(\b\lc\(\rc\)(\a\vs4\al\c1(2-\f(3,4)))2+0-02)=eq \f(5,4),
    所以圆E的标准方程为eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(3,4)))2+y2=eq \f(25,16).
    2.在平面直角坐标系Oxy中,以点(0,1)为圆心且与直线x-by+2b+1=0相切的所有圆中,半径最大的圆的标准方程为( )
    A.x2+(y-1)2=4 B.x2+(y-1)2=2
    C.x2+(y-1)2=8 D.x2+(y-1)2=16
    答案 B
    解析 由直线x-by+2b+1=0可得该直线过定点A(-1,2),设圆心为B(0,1),由题意可知要使所求圆的半径最大,则rmax=|AB|=eq \r(-1-02+2-12)=eq \r(2),所以半径最大的圆的标准方程为x2+(y-1)2=2.
    思维升华 (1)直接法:直接求出圆心坐标和半径,写出方程.
    (2)待定系数法
    ①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,求出a,b,r的值;
    ②选择圆的一般方程,依据已知条件列出关于D,E,F的方程组,进而求出D,E,F的值.
    跟踪训练1 (1)圆心在y轴上,半径长为1,且过点A(1,2)的圆的方程是( )
    A.x2+(y-2)2=1B.x2+(y+2)2=1
    C.(x-1)2+(y-3)2=1D.x2+(y-3)2=4
    答案 A
    解析 根据题意可设圆的方程为x2+(y-b)2=1,因为圆过点A(1,2),所以12+(2-b)2=1,解得b=2,所以所求圆的方程为x2+(y-2)2=1.
    (2)(2022·长春模拟)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
    A.(x-3)2+(y-1)2=1B.(x-2)2+(y-1)2=1
    C.(x+2)2+(y-1)2=1D.(x-2)2+(y+1)2=1
    答案 B
    解析 设圆心坐标为(a,b)(a>0,b>0),
    由圆与直线4x-3y=0相切,可得圆心到直线的距离d=eq \f(|4a-3b|,5)=r=1,
    化简得|4a-3b|=5,①
    又圆与x轴相切,可得|b|=r=1,解得b=1或b=-1(舍去),
    把b=1代入①得4a-3=5或4a-3=-5,
    解得a=2或a=-eq \f(1,2)(舍去),
    所以圆心坐标为(2,1),
    则圆的标准方程为(x-2)2+(y-1)2=1.
    题型二 与圆有关的轨迹问题
    例2 已知Rt△ABC的斜边为AB,且A(-1,0),B(3,0).求:
    (1)直角顶点C的轨迹方程;
    (2)直角边BC的中点M的轨迹方程.
    解 (1)方法一 设C(x,y),因为A,B,C三点不共线,所以y≠0.
    因为AC⊥BC,且BC,AC斜率均存在,
    所以kAC·kBC=-1,
    又kAC=eq \f(y,x+1),kBC=eq \f(y,x-3),
    所以eq \f(y,x+1)·eq \f(y,x-3)=-1,
    化简得x2+y2-2x-3=0.
    因此,直角顶点C的轨迹方程为x2+y2-2x-3=0(y≠0).
    方法二 设AB的中点为D,由中点坐标公式得D(1,0),由直角三角形的性质知|CD|=eq \f(1,2)|AB|=2.由圆的定义知,动点C的轨迹是以D(1,0)为圆心,2为半径的圆(由于A,B,C三点不共线,所以应除去与x轴的交点).
    所以直角顶点C的轨迹方程为(x-1)2+y2=4(y≠0).
    (2)设M(x,y),C(x0,y0),因为B(3,0),M是线段BC的中点,由中点坐标公式得x=eq \f(x0+3,2),y=eq \f(y0+0,2),
    所以x0=2x-3,y0=2y.
    由(1)知,点C的轨迹方程为(x-1)2+y2=4(y≠0),
    将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4,
    即(x-2)2+y2=1(y≠0).
    因此动点M的轨迹方程为(x-2)2+y2=1(y≠0).
    教师备选
    已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.
    (1)求线段AP中点的轨迹方程;
    (2)若∠PBQ=90°,求线段PQ中点的轨迹方程.
    解 (1)设AP的中点为M(x,y),由中点坐标公式可知点P坐标为(2x-2,2y).
    因为点P在圆x2+y2=4上,
    所以(2x-2)2+(2y)2=4.
    故线段AP中点的轨迹方程为(x-1)2+y2=1.
    (2)设PQ的中点为N(x,y).
    在Rt△PBQ中,|PN|=|BN|.
    设O为坐标原点,连接ON(图略),
    则ON⊥PQ,
    所以|OP|2=|ON|2+|PN|2
    =|ON|2+|BN|2,
    所以x2+y2+(x-1)2+(y-1)2=4.
    故线段PQ中点的轨迹方程为
    x2+y2-x-y-1=0.
    思维升华 求与圆有关的轨迹问题时,根据题设条件的不同常采用以下方法:
    (1)直接法:直接根据题目提供的条件列出方程.
    (2)定义法:根据圆、直线等定义列方程.
    (3)几何法:利用圆的几何性质列方程.
    (4)相关点代入法:找到要求点与已知点的关系,代入已知点满足的关系式.
    跟踪训练2 (1)当点P在圆x2+y2=1上运动时,连接它与定点Q(3,0),则线段PQ的中点M的轨迹方程是( )
    A.(x+3)2+y2=1B.(x-3)2+y2=1
    C.(2x-3)2+4y2=1D.(2x+3)2+4y2=1
    答案 C
    解析 设M(x,y),P(x0,y0),因为PQ的中点为M,
    所以eq \b\lc\{\rc\ (\a\vs4\al\c1(x=\f(x0+3,2),,y=\f(y0+0,2),))
    所以eq \b\lc\{\rc\ (\a\vs4\al\c1(x0=2x-3,,y0=2y,))
    又因为P在圆x2+y2=1上,
    所以(2x-3)2+4y2=1,
    所以M的轨迹方程即为(2x-3)2+4y2=1.
    (2)自圆C:(x-3)2+(y+4)2=4外一点P(x,y)引该圆的一条切线,切点为Q,PQ的长度等于点P到原点O的距离,则点P的轨迹方程为( )
    A.8x-6y-21=0 B.8x+6y-21=0
    C.6x+8y-21=0 D.6x-8y-21=0
    答案 D
    解析 由题意得,圆心C的坐标为(3,-4),半径r=2,连接PC,CQ(图略),
    因为|PQ|=|PO|,且PQ⊥CQ,
    所以|PO|2+r2=|PC|2,
    所以x2+y2+4=(x-3)2+(y+4)2,
    即6x-8y-21=0,
    所以点P的轨迹方程为6x-8y-21=0.
    题型三 与圆有关的最值问题
    命题点1 利用几何性质求最值
    例3 已知M(x,y)为圆C:x2+y2-4x-14y+45=0上任意一点,且点Q(-2,3).
    (1)求|MQ|的最大值和最小值;
    (2)求eq \f(y-3,x+2)的最大值和最小值;
    (3)求y-x的最大值和最小值.
    解 (1)由圆C:x2+y2-4x-14y+45=0,
    可得(x-2)2+(y-7)2=8,
    ∴圆心C的坐标为(2,7),半径r=2eq \r(2).
    又|QC|=eq \r(2+22+7-32)=4eq \r(2),
    ∴|MQ|max=4eq \r(2)+2eq \r(2)=6eq \r(2),
    |MQ|min=4eq \r(2)-2eq \r(2)=2eq \r(2).
    (2)可知eq \f(y-3,x+2)表示直线MQ的斜率k.
    设直线MQ的方程为y-3=k(x+2),
    即kx-y+2k+3=0.
    ∵直线MQ与圆C有交点,
    ∴eq \f(|2k-7+2k+3|,\r(1+k2))≤2eq \r(2),
    可得2-eq \r(3)≤k≤2+eq \r(3),
    ∴eq \f(y-3,x+2)的最大值为2+eq \r(3),最小值为2-eq \r(3).
    (3)设y-x=b,则x-y+b=0.
    当直线y=x+b与圆C相切时,截距b取到最值,∴eq \f(|2-7+b|,\r(12+-12))=2eq \r(2),
    ∴b=9或b=1.
    ∴y-x的最大值为9,最小值为1.
    命题点2 利用函数求最值
    例4 (2022·湘潭质检)设点P(x,y)是圆x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0).则eq \(PA,\s\up6(→))·eq \(PB,\s\up6(→))的最大值为________.
    答案 12
    解析 由题意,得eq \(PA,\s\up6(→))=(2-x,-y),
    eq \(PB,\s\up6(→))=(-2-x,-y),
    所以eq \(PA,\s\up6(→))·eq \(PB,\s\up6(→))=x2+y2-4,
    由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,
    故x2=-(y-3)2+1,
    所以eq \(PA,\s\up6(→))·eq \(PB,\s\up6(→))=-(y-3)2+1+y2-4
    =6y-12.
    易知2≤y≤4,所以当y=4时,eq \(PA,\s\up6(→))·eq \(PB,\s\up6(→))的值最大,最大值为6×4-12=12.
    延伸探究 若将本题改为“设点P(x,y)是圆(x-3)2+y2=4上的动点,定点A(0,2),B(0,
    -2)”,则|eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))|的最大值为________.
    答案 10
    解析 由题意,知eq \(PA,\s\up6(→))=(-x,2-y),
    eq \(PB,\s\up6(→))=(-x,-2-y),
    所以eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))=(-2x,-2y),
    由于点P(x,y)是圆上的点,
    故其坐标满足方程(x-3)2+y2=4,
    故y2=-(x-3)2+4,
    所以|eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))|=eq \r(4x2+4y2)=2eq \r(6x-5).
    由圆的方程(x-3)2+y2=4,易知1≤x≤5,
    所以当x=5时,|eq \(PA,\s\up6(→))+eq \(PB,\s\up6(→))|的值最大,最大值为2eq \r(6×5-5)=10.
    教师备选
    1.已知圆C:(x-3)2+(y-4)2=1和两点A(-m,0),B(m,0)(m>0).若圆C上存在点P,使得∠APB=90°,则m的最大值为( )
    A.7 B.6 C.5 D.4
    答案 B
    解析 ∵在Rt△APB中,原点O为斜边中点,
    |AB|=2m(m>0),
    ∴|OC|-r≤m=|OP|≤|OC|+r,
    又C(3,4),r=1,
    ∴4≤|OP|≤6,即4≤m≤6.
    2.若点P为圆x2+y2=1上的一个动点,A(-1,0),B(1,0)为两个定点,则|PA|+|PB|的最大值为( )
    A.2 B.2eq \r(2) C.4eq \r(2) D.4
    答案 B
    解析 由已知得线段AB为圆的直径.
    所以|PA|2+|PB|2=4,
    由基本不等式得
    eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(|PA|+|PB|,2)))2≤eq \f(|PA|2+|PB|2,2)=2,
    所以|PA|+|PB|≤2eq \r(2),
    当且仅当|PA|=|PB|=eq \r(2)时,等号成立.
    思维升华 与圆有关的最值问题的求解方法
    (1)借助几何性质求最值:形如μ=eq \f(y-b,x-a),t=ax+by,(x-a)2+(y-b)2形式的最值问题.
    (2)建立函数关系式求最值:列出关于所求目标式子的函数关系式,然后根据关系式的特征选用配方法、判别式法、基本不等式法等求最值.
    (3)求解形如|PM|+|PN|(其中M,N均为动点)且与圆C有关的折线段的最值问题的基本思路:①“动化定”,把与圆上动点的距离转化为与圆心的距离;②“曲化直”,即将折线段之和转化为同一直线上的两线段之和,一般要通过对称性解决.
    跟踪训练3 (1)已知A(-2,0),B(2,0),点P是圆C:(x-3)2+(y-eq \r(7))2=1上的动点,则|AP|2+|BP|2的最小值为( )
    A.9 B.14 C.16 D.26
    答案 D
    解析 设O为坐标原点,P(x,y),
    则|AP|2+|BP|2=(x+2)2+y2+(x-2)2+y2
    =2(x2+y2)+8=2|PO|2+8.
    圆C的圆心为C(3,eq \r(7)),半径为r=1,OC=4,
    所以|PO|2的最小值为(OC-r)2=(4-1)2=9,
    所以|AP|2+|BP|2的最小值为26.
    (2)已知x,y满足x2+y2-4x-2y-4=0,则eq \f(2x+3y+3,x+3)的最大值为( )
    A.2 B.eq \f(17,4) C.eq \f(29,5) D.eq \f(13\r(13),4)
    答案 B
    解析 由x2+y2-4x-2y-4=0
    得(x-2)2+(y-1)2=9.
    eq \f(2x+3y+3,x+3)=2+3×eq \f(y-1,x+3)=2+3kPA,
    其中A(-3,1)为定点,点P(x,y)为圆上一点.
    设过定点A的直线l:y-1=k(x+3)与圆相切,
    则eq \f(|5k|,\r(1+k2))=3,
    解得k=±eq \f(3,4),
    所以-eq \f(3,4)≤kPA≤eq \f(3,4),
    所以eq \f(2x+3y+3,x+3)的最大值为2+3×eq \f(3,4)=eq \f(17,4).
    课时精练
    1.圆x2+y2+4x-6y-3=0的圆心坐标和半径分别为( )
    A.(4,-6),16 B.(2,-3),4
    C.(-2,3),4 D.(2,-3),16
    答案 C
    解析 将圆的一般方程化为标准方程得(x+2)2+(y-3)2=16,则圆心坐标为(-2,3),半径为4.
    2.圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为( )
    A.(x-2)2+(y-1)2=1B.(x+1)2+(y-2)2=1
    C.(x+2)2+(y-1)2=1D.(x-1)2+(y+2)2=1
    答案 A
    解析 已知圆的圆心C(1,2)关于直线y=x对称的点为C′(2,1),所以圆(x-1)2+(y-2)2=1关于直线y=x对称的圆的方程为(x-2)2+(y-1)2=1.
    3.已知圆C的半径为2,圆心在x轴正半轴上,直线3x+4y+4=0与圆C相切,则圆C的方程为( )
    A.x2+y2-2x-3=0B.x2+y2+4x=0
    C.x2+y2+2x-3=0D.x2+y2-4x=0
    答案 D
    解析 设圆心为(a,0)(a>0),由题意知圆心到直线3x+4y+4=0的距离d=eq \f(|3a+4|,\r(32+42))=eq \f(3a+4,5)=r=2,解得a=2,所以圆心坐标为(2,0),则圆C的方程为(x-2)2+y2=4,化简得x2+y2-4x=0,故选D.
    4.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )
    A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4
    C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1
    答案 A
    解析 设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),
    则eq \b\lc\{\rc\ (\a\vs4\al\c1(x=\f(4+x0,2),,y=\f(-2+y0,2),))
    解得eq \b\lc\{\rc\ (\a\vs4\al\c1(x0=2x-4,,y0=2y+2.))
    因为点Q在圆x2+y2=4上,
    所以xeq \\al(2,0)+yeq \\al(2,0)=4,
    即(2x-4)2+(2y+2)2=4,
    化简得(x-2)2+(y+1)2=1.
    5.(多选)已知△ABC的三个顶点为A(-1,2),B(2,1),C(3,4),则下列关于△ABC的外接圆圆M的说法正确的是( )
    A.圆M的圆心坐标为(1,3)
    B.圆M的半径为eq \r(5)
    C.圆M关于直线x+y=0对称
    D.点(2,3)在圆M内
    答案 ABD
    解析 设△ABC的外接圆圆M的方程为x2+y2+Dx+Ey+F=0,
    则eq \b\lc\{\rc\ (\a\vs4\al\c1(1+4-D+2E+F=0,,4+1+2D+E+F=0,,9+16+3D+4E+F=0,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(D=-2,,E=-6,,F=5.))
    所以△ABC的外接圆圆M的方程为x2+y2-2x-6y+5=0,即(x-1)2+(y-3)2=5.故圆M的圆心坐标为(1,3),圆M的半径为eq \r(5),因为直线x+y=0不经过圆M的圆心(1,3),所以圆M不关于直线x+y=0对称.因为(2-1)2+(3-3)2=1<5,故点(2,3)在圆M内.
    6.(多选)设有一组圆Ck:(x-k)2+(y-k)2=4(k∈R),下列命题正确的是( )
    A.不论k如何变化,圆心C始终在一条直线上
    B.所有圆Ck均不经过点(3,0)
    C.经过点(2,2)的圆Ck有且只有一个
    D.所有圆的面积均为4π
    答案 ABD
    解析 圆心坐标为(k,k),在直线y=x上,
    A正确;
    令(3-k)2+(0-k)2=4,
    化简得2k2-6k+5=0,
    ∵Δ=36-40=-4<0,
    ∴2k2-6k+5=0无实数根,
    ∴B正确;
    由(2-k)2+(2-k)2=4,
    化简得k2-4k+2=0,
    ∵Δ=16-8=8>0,有两个不相等实根,
    ∴经过点(2,2)的圆Ck有两个,C错误;
    由圆的半径为2,得圆的面积为4π,D正确.
    7.已知圆C的圆心在x轴上,并且经过点A(-1,1),B(1,3),若M(m,eq \r(6))在圆C内,则m的取值范围为________.
    答案 (0,4)
    解析 设圆心为C(a,0),由|CA|=|CB|,
    得(a+1)2+12=(a-1)2+32,解得a=2.
    半径r=|CA|=eq \r(2+12+12)=eq \r(10).
    故圆C的方程为(x-2)2+y2=10.
    由题意知(m-2)2+(eq \r(6))2<10,解得08.已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|PA|+|PQ|的最小值是________.
    答案 2eq \r(5)
    解析 因为圆C:x2+y2-4x-2y=0,
    故圆C是以C(2,1)为圆心,半径r=eq \r(5)的圆.
    设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),
    故eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(m+0,2)+\f(n+2,2)+2=0,,\f(n-2,m-0)=1,))解得eq \b\lc\{\rc\ (\a\vs4\al\c1(m=-4,,n=-2,))
    故A′(-4,-2).
    连接A′C交圆C于Q(图略),由对称性可知
    |PA|+|PQ|=|A′P|+|PQ|≥|A′Q|
    =|A′C|-r=2eq \r(5).
    9.已知圆心为C的圆经过点A(-1,1)和B(-2,-2),且圆心在直线l:x+y-1=0上.
    (1)求圆心为C的圆的标准方程;
    (2)设点P在圆C上,点Q在直线x-y+5=0上,求|PQ|的最小值.
    解 (1)设圆的标准方程为
    (x-a)2+(y-b)2=r2(r>0),
    ∵圆经过点Aeq \b\lc\(\rc\)(\a\vs4\al\c1(-1,1))和Beq \b\lc\(\rc\)(\a\vs4\al\c1(-2,-2)),
    且圆心在直线l:x+y-1=0上,
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(-1-a2+\b\lc\(\rc\)(\a\vs4\al\c1(1-b))2=r2,,-2-a2+\b\lc\(\rc\)(\a\vs4\al\c1(-2-b))2=r2,,a+b-1=0,))
    解得a=3,b=-2,r=5,
    ∴圆的标准方程为(x-3)2+(y+2)2=25.
    (2)∵圆心C到直线x-y+5=0的距离为
    d=eq \f(|3+2+5|,\r(2))=5eq \r(2)>5,
    ∴直线与圆C相离,
    ∴|PQ|的最小值为d-r=5eq \r(2)-5.
    10.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
    (1)若点P的轨迹为曲线C,求此曲线的方程;
    (2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
    解 (1)设点P的坐标为(x,y),
    则eq \r(x+32+y2)=2eq \r(x-32+y2),
    化简可得(x-5)2+y2=16,此方程即为所求.
    (2)曲线C是以点(5,0)为圆心,4为半径的圆,如图所示.
    由题意知直线l2是此圆的切线,
    连接CQ,
    则|QM|=eq \r(|CQ|2-|CM|2)=eq \r(|CQ|2-16),
    当|QM|最小时,|CQ|最小,此时CQ⊥l1,
    |CQ|=eq \f(|5+3|,\r(2))=4eq \r(2),
    则|QM|的最小值为eq \r(32-16)=4.
    11.点A为圆(x-1)2+y2=1上的动点,PA是圆的切线,|PA|=1,则点P的轨迹方程是( )
    A.(x-1)2+y2=4B.(x-1)2+y2=2
    C.y2=2xD.y2=-2x
    答案 B
    解析 ∵|PA|=1,
    ∴点P和圆心的距离恒为eq \r(2),
    又圆心坐标为(1,0),设P(x,y),
    ∴由两点间的距离公式,得(x-1)2+y2=2.
    12.等边△ABC的面积为9eq \r(3),且△ABC的内心为M,若平面内的点N满足|MN|=1,则eq \(NA,\s\up6(→))·eq \(NB,\s\up6(→))的最小值为( )
    A.-5-2eq \r(3) B.-5-4eq \r(3)
    C.-6-2eq \r(3) D.-6-4eq \r(3)
    答案 A
    解析 设等边△ABC的边长为a,
    则面积S=eq \f(\r(3),4)a2=9eq \r(3),
    解得a=6.
    以AB所在直线为x轴,AB的垂直平分线为y轴建立如图所示的平面直角坐标系.
    由M为△ABC的内心,则M在OC上,且OM=eq \f(1,3)OC,
    则A(-3,0),B(3,0),C(0,3eq \r(3)),M(0,eq \r(3)),
    由|MN|=1,则点N在以M为圆心,1为半径的圆上.
    设N(x,y),则x2+(y-eq \r(3))2=1,
    即x2+y2-2eq \r(3)y+2=0,
    且eq \r(3)-1≤y≤1+eq \r(3),
    又eq \(NA,\s\up6(→))=(-3-x,-y),eq \(NB,\s\up6(→))=(3-x,-y),
    所以eq \(NA,\s\up6(→))·eq \(NB,\s\up6(→))=(x+3)(x-3)+y2
    =x2+y2-9=2eq \r(3)y-11
    ≥2eq \r(3)×(eq \r(3)-1)-11=-5-2eq \r(3).
    13.(多选)已知圆C过点M(1,-2)且与两坐标轴均相切,则下列叙述正确的是( )
    A.满足条件的圆C的圆心在一条直线上
    B.满足条件的圆C有且只有一个
    C.点(2,-1)在满足条件的圆C上
    D.满足条件的圆C有且只有两个,它们的圆心距为4eq \r(2)
    答案 ACD
    解析 因为圆C和两个坐标轴都相切,且过点M(1,-2),所以设圆心坐标为(a,-a)(a>0),故圆心在直线y=-x上,A正确;圆C的方程为(x-a)2+(y+a)2=a2,把点M的坐标代入可得a2-6a+5=0,解得a=1或a=5,则圆心坐标为(1,-1)或(5,-5),所以满足条件的圆C有且只有两个,故B错误;圆C的方程分别为(x-1)2+(y+1)2=1,(x-5)2+(y+5)2=25,将点(2,-1)代入这两个方程可知其在圆C上,故C正确;它们的圆心距为eq \r(5-12+-5+12)=4eq \r(2),D正确.
    14.已知长为2a(a>0)的线段AB的两个端点A和B分别在x轴和y轴上滑动,则线段AB的中点的轨迹方程为________.
    答案 x2+y2=a2
    解析 如图,不论直线怎么移动,线段AB的中点P(x,y)与原点O的连线始终为Rt△OAB斜边上的中线,即|OP|=a,即x2+y2=a2.故所求的轨迹方程为x2+y2=a2.
    15.已知直线l:3x+4y+m=0,圆C:x2+y2-4x+2=0,则圆C的半径r=________;若在圆C上存在两点A,B,在直线l上存在一点P,使得∠APB=90°,则实数m的取值范围是______.
    答案 eq \r(2) eq \b\lc\[\rc\](\a\vs4\al\c1(-16,4))
    解析 圆的标准方程为(x-2)2+y2=2,圆心为C(2,0),半径为r=eq \r(2),
    若在圆C上存在两点A,B,在直线l上存在一点P,使得∠APB=90°,过P作圆的两条切线PM,PN(M,N为切点),则由题意得,∠MPN≥90°,而当CP⊥l时,∠MPN最大,只要此最大角≥90°即可,此时圆心C到直线l的距离为
    d=|CP|=eq \f(|6+m|,5).
    所以eq \f(r,d)=eq \f(\r(2),\f(|6+m|,5))≥eq \f(\r(2),2),解得-16≤m≤4.
    16.在平面直角坐标系Oxy中,曲线Γ:y=x2-mx+2m(m∈R)与x轴交于不同的两点A,B,曲线Γ与y轴交于点C.
    (1)是否存在以AB为直径的圆过点C?若存在,求出该圆的方程;若不存在,请说明理由;
    (2)求证:过A,B,C三点的圆过定点.
    解 由曲线Γ:y=x2-mx+2m(m∈R),
    令y=0,得x2-mx+2m=0.
    设A(x1,0),B(x2,0),
    可得Δ=m2-8m>0,
    则m<0或m>8,x1+x2=m,x1x2=2m.
    令x=0,得y=2m,即C(0,2m).
    (1)若存在以AB为直径的圆过点C,
    则eq \(AC,\s\up6(→))·eq \(BC,\s\up6(→))=0,
    得x1x2+4m2=0,
    即2m+4m2=0,
    所以m=0(舍去)或m=-eq \f(1,2).
    此时C(0,-1),AB的中点Meq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(1,4),0))即圆心,
    半径r=|CM|=eq \f(\r(17),4),
    故所求圆的方程为eq \b\lc\(\rc\)(\a\vs4\al\c1(x+\f(1,4)))2+y2=eq \f(17,16).
    (2)证明 设过A,B两点的圆的方程为x2+y2-mx+Ey+2m=0,
    将点C(0,2m)代入可得E=-1-2m,
    所以过A,B,C三点的圆的方程为x2+y2-mx-(1+2m)y+2m=0.
    整理得x2+y2-y-m(x+2y-2)=0.
    令eq \b\lc\{\rc\ (\a\vs4\al\c1(x2+y2-y=0,,x+2y-2=0,))
    可得eq \b\lc\{\rc\ (\a\vs4\al\c1(x=0,,y=1))或eq \b\lc\{\rc\ (\a\vs4\al\c1(x=\f(2,5),,y=\f(4,5),))
    故过A,B,C三点的圆过定点(0,1)和eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(2,5),\f(4,5))).定义
    平面上到定点的距离等于定长的点的集合叫做圆




    (x-a)2+(y-b)2=r2(r>0)
    圆心C(a,b)
    半径为r


    x2+y2+Dx+Ey+F=0(D2+E2-4F>0)
    圆心Ceq \b\lc\(\rc\)(\a\vs4\al\c1(-\f(D,2),-\f(E,2)))
    半径r=eq \f(1,2)eq \r(D2+E2-4F)
    相关试卷

    (新高考)高考数学一轮复习讲练测第8章§8.3圆的方程(含解析): 这是一份(新高考)高考数学一轮复习讲练测第8章§8.3圆的方程(含解析),共14页。

    2024高考数学一轮复习讲义(步步高版)第八章 §8.3 圆的方程: 这是一份2024高考数学一轮复习讲义(步步高版)第八章 §8.3 圆的方程,共17页。

    2024年(新高考)高考数学一轮复习突破练习9.4《圆的方程》(含详解): 这是一份2024年(新高考)高考数学一轮复习突破练习9.4《圆的方程》(含详解),共4页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        (新高考)高考数学一轮复习讲义第8章§8.3圆的方程(含详解)
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map