年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题

    高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题第1页
    高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题第2页
    高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题第3页
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题

    展开

    这是一份高中数学高考2022届高考数学一轮复习(新高考版) 第8章 高考专题突破五 第1课时 范围与最值问题,共10页。试卷主要包含了范围问题,最值问题等内容,欢迎下载使用。

    题型一 范围问题
    例1 已知椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的离心率e=eq \f(\r(3),2),直线x+eq \r(3)y-1=0被以椭圆C的短轴为直径的圆截得的弦长为eq \r(3).
    (1)求椭圆C的方程;
    (2)过点M(4,0)的直线l交椭圆于A,B两个不同的点,且λ=|MA|·|MB|,求λ的取值范围.
    解 (1)因为原点到直线x+eq \r(3)y-1=0的距离为eq \f(1,2).
    所以eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2+eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(\r(3),2)))2=b2(b>0),解得b=1.
    又e2=eq \f(c2,a2)=1-eq \f(b2,a2)=eq \f(3,4),得a=2.
    所以椭圆C的方程为eq \f(x2,4)+y2=1.
    (2)当直线l的斜率为0时,λ=|MA|·|MB|=12.
    当直线l的斜率不为0时,设直线l:x=my+4,A(x1,y1),B(x2,y2),
    联立方程eq \b\lc\{\rc\ (\a\vs4\al\c1(x=my+4,,\f(x2,4)+y2=1,))得(m2+4)y2+8my+12=0.
    由Δ=64m2-48(m2+4)>0,得m2>12,
    所以y1y2=eq \f(12,m2+4).
    λ=|MA|·|MB|=eq \r(m2+1)|y1|·eq \r(m2+1)|y2|=(m2+1)·|y1y2|=eq \f(12m2+1,m2+4)=12eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(3,m2+4))).
    由m2>12,得00,
    可知k>0,b>0,
    因为|CD|=eq \r(1+k2)|x1-x2|=aeq \r(1+k2),
    点O到直线CD的距离d=eq \f(|b|,\r(1+k2)),
    所以S1=eq \f(1,2)·aeq \r(1+k2)·eq \f(|b|,\r(1+k2))=eq \f(1,2)ab.
    又S2=eq \f(1,2)(y1+y2)·|x1-x2|=eq \f(1,2)·eq \f(2p,k)·a=eq \f(ap,k),
    所以eq \f(S1,S2)=eq \f(kb,2p),
    因为00)过点M(2,3),
    可得eq \f(4,16)+eq \f(9,b2)=1,解得b2=12.
    所以C的方程为eq \f(x2,16)+eq \f(y2,12)=1.
    (2)设与直线AM平行的直线方程为x-2y=m.
    如图所示,当直线与椭圆相切时,与AM距离比较远的直线与椭圆的切点为N,此时△AMN的面积取得最大值.
    联立eq \b\lc\{\rc\ (\a\vs4\al\c1(x-2y=m,,\f(x2,16)+\f(y2,12)=1,))
    可得3(m+2y)2+4y2=48,
    化简可得16y2+12my+3m2-48=0,
    所以Δ=144m2-4×16(3m2-48)=0,
    即m2=64,解得m=±8,
    与AM距离比较远的直线方程为x-2y=8,
    点N到直线AM的距离即两平行线之间的距离,
    即d=eq \f(8+4,\r(1+4))=eq \f(12\r(5),5),
    由两点之间的距离公式可得
    |AM|=eq \r(2+42+32)=3eq \r(5).
    所以△AMN的面积的最大值为eq \f(1,2)×3eq \r(5)×eq \f(12\r(5),5)=18.
    命题点2 代数法求最值
    例3 在平面直角坐标系中,O为坐标原点,圆O交x轴于点F1,F2,交y轴于点B1,B2,以B1,B2为顶点,F1,F2分别为左、右焦点的椭圆E恰好经过点eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(\r(2),2))).
    (1)求椭圆E的标准方程;
    (2)设经过点(-2,0)的直线l与椭圆E交于M,N两点,求△F2MN的面积的最大值.
    解 (1)由题意得椭圆E的焦点在x轴上.
    设椭圆E的标准方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),焦距为2c,则b=c,
    ∴a2=b2+c2=2b2,∴椭圆E的标准方程为eq \f(x2,2b2)+eq \f(y2,b2)=1.
    ∵椭圆E经过点eq \b\lc\(\rc\)(\a\vs4\al\c1(1,\f(\r(2),2))),∴eq \f(1,2b2)+eq \f(\f(1,2),b2)=1,解得b2=1.
    ∴椭圆E的标准方程为eq \f(x2,2)+y2=1.
    (2)∵点(-2,0)在椭圆E外,∴直线l的斜率存在.
    设直线l的斜率为k,则直线l:y=k(x+2).设M(x1,y1),N(x2,y2).
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(y=kx+2,,\f(x2,2)+y2=1,))消去y,得(1+2k2)x2+8k2x+8k2-2=0.
    ∴x1+x2=eq \f(-8k2,1+2k2),x1x2=eq \f(8k2-2,1+2k2),
    Δ=64k4-4(1+2k2)(8k2-2)>0,解得0≤k20,故x=eq \f(3,2),于是y=eq \f(5\r(3),2).
    ∴点P的坐标是eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(3,2),\f(5\r(3),2))).
    (2)由(1)可得直线AP的方程是x-eq \r(3)y+6=0,点B(6,0).
    设点M的坐标是(m,0),则点M到直线AP的距离是eq \f(|m+6|,2),
    于是eq \f(|m+6|,2)=|m-6|,
    又-6≤m≤6,解得m=2.
    由椭圆上的点(x,y)到点M的距离为d,
    得d2=(x-2)2+y2=x2-4x+4+20-eq \f(5,9)x2=eq \f(4,9)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(9,2)))2+15,
    由于-6≤x≤6,
    由f(x)=eq \f(4,9)eq \b\lc\(\rc\)(\a\vs4\al\c1(x-\f(9,2)))2+15的图象可知,
    当x=eq \f(9,2)时,d取最小值,且最小值为eq \r(15).
    课时精练
    1.设椭圆C:eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0)的左顶点为A,上顶点为B,已知直线AB的斜率为eq \f(1,2),|AB|=eq \r(5).
    (1)求椭圆C的方程;
    (2)设直线l:x=my-1与椭圆C交于不同的两点M,N,且点O在以MN为直径的圆外(其中O为坐标原点),求m的取值范围.
    解 (1)由已知得A(-a,0),B(0,b),
    ∴eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(b,a)=\f(1,2),,\r(a2+b2)=\r(5),))可得a2=4,b2=1,
    则椭圆C的方程为eq \f(x2,4)+y2=1.
    (2)设M(x1,y1),N(x2,y2),
    由eq \b\lc\{\rc\ (\a\vs4\al\c1(x=my-1,,\f(x2,4)+y2=1,))得(m2+4)y2-2my-3=0.
    Δ=(2m)2+12(4+m2)=16m2+48>0,
    y1+y2=eq \f(2m,m2+4),y1y2=eq \f(-3,m2+4),
    由题意得∠MON为锐角,即eq \(OM,\s\up6(→))·eq \(ON,\s\up6(→))>0,
    ∴eq \(OM,\s\up6(→))·eq \(ON,\s\up6(→))=x1x2+y1y2>0,
    又x1x2=(my1-1)(my2-1)=m2y1y2-m(y1+y2)+1.
    ∴x1x2+y1y2=(1+m2)y1y2-m(y1+y2)+1=(1+m2)·eq \f(-3,4+m2)-eq \f(2m2,4+m2)+1=eq \f(1-4m2,4+m2)>0,
    ∴m2b>0)的离心率为eq \f(\r(6),3),短轴一个端点到右焦点的距离为eq \r(3).
    (1)求椭圆C的方程;
    (2)设斜率存在的直线l与椭圆C交于A,B两点,坐标原点O到直线l的距离为eq \f(\r(3),2),求△AOB面积的最大值.
    解 (1)设椭圆的半焦距为c,依题意知eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(c,a)=\f(\r(6),3),,a=\r(3),))
    ∴c=eq \r(2),b=1,∴所求椭圆方程为eq \f(x2,3)+y2=1.
    (2)设A(x1,y1),B(x2,y2),
    设直线AB的方程为y=kx+m.
    由已知eq \f(|m|,\r(1+k2))=eq \f(\r(3),2),得m2=eq \f(3,4)(k2+1).
    把y=kx+m代入椭圆方程,整理,得(3k2+1)x2+6kmx+3m2-3=0.
    Δ=36k2m2-4(3k2+1)(3m2-3)=36k2-12m2+12>0.
    ∴x1+x2=eq \f(-6km,3k2+1),x1x2=eq \f(3m2-1,3k2+1).
    ∴|AB|2=(1+k2)(x2-x1)2=(1+k2)eq \b\lc\[\rc\](\a\vs4\al\c1(\f(36k2m2,3k2+12)-\f(12m2-1,3k2+1)))
    =eq \f(12k2+13k2+1-m2,3k2+12)=eq \f(3k2+19k2+1,3k2+12)
    =3+eq \f(12k2,9k4+6k2+1)=3+eq \f(12,9k2+\f(1,k2)+6)(k≠0)
    ≤3+eq \f(12,2×3+6)=4.
    当且仅当9k2=eq \f(1,k2),即k=±eq \f(\r(3),3)时等号成立.
    当k=0时,|AB|=eq \r(3),综上所述|AB|max=2.
    ∴当|AB|最大时,△AOB的面积取得最大值
    S=eq \f(1,2)×|AB|max×eq \f(\r(3),2)=eq \f(\r(3),2).
    5.已知椭圆的两个焦点为F1(-1,0),F2(1,0),且椭圆与直线y=x-eq \r(3)相切.
    (1)求椭圆的方程;
    (2)过F1作两条互相垂直的直线l1,l2,与椭圆分别交于点P,Q及M,N,求四边形PMQN面积的最小值.
    解 (1)设椭圆方程为eq \f(x2,a2)+eq \f(y2,b2)=1(a>b>0),
    因为它与直线y=x-eq \r(3)只有一个公共点,
    所以方程组eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(x2,a2)+\f(y2,b2)=1,,y=x-\r(3)))只有一组解,
    消去y,整理得(a2+b2)·x2-2eq \r(3)a2x+3a2-a2b2=0.
    所以Δ=(-2eq \r(3)a2)2-4(a2+b2)(3a2-a2b2)=0,
    化简得a2+b2=3.
    又焦点为F1(-1,0),F2(1,0),
    所以a2-b2=1,联立上式解得a2=2,b2=1.
    所以椭圆的方程为eq \f(x2,2)+y2=1.
    (2)若直线PQ的斜率不存在(或为0),
    则S四边形PMQN=eq \f(|PQ|·|MN|,2)=eq \f(2\r(1-\f(1,2))×2\r(2),2)=2.
    若直线PQ的斜率存在,设为k(k≠0),
    则直线MN的斜率为-eq \f(1,k).
    所以直线PQ的方程为y=kx+k,
    设P(x1,y1),Q(x2,y2),
    联立方程得eq \b\lc\{\rc\ (\a\vs4\al\c1(\f(x2,2)+y2=1,,y=kx+k,))
    化简得(2k2+1)x2+4k2x+2k2-2=0,
    则x1+x2=eq \f(-4k2,2k2+1),x1x2=eq \f(2k2-2,2k2+1),
    所以|PQ|=eq \r(1+k2)|x1-x2|=eq \f(\r(1+k2[16k4-42k2-22k2+1]),2k2+1)=2eq \r(2)×eq \f(k2+1,2k2+1),
    同理可得|MN|=2eq \r(2)×eq \f(k2+1,2+k2).
    所以S四边形PMQN=eq \f(|PQ|·|MN|,2)=4×eq \f(k2+12,2+k22k2+1)=4×eq \f(k4+2k2+1,2k4+5k2+2)=4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(\f(1,2)k2,2k4+5k2+2)))
    =4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(k2,4k4+10k2+4)))=4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,4k2+\f(4,k2)+10))).
    因为4k2+eq \f(4,k2)+10≥2eq \r(4k2·\f(4,k2))+10=18(当且仅当k2=1时取等号),
    所以eq \f(1,4k2+\f(4,k2)+10)∈eq \b\lc\(\rc\](\a\vs4\al\c1(0,\f(1,18))),所以4×eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)-\f(1,4k2+\f(4,k2)+10)))∈eq \b\lc\[\rc\)(\a\vs4\al\c1(\f(16,9),2)).
    综上所述,四边形PMQN面积的最小值为eq \f(16,9).

    相关试卷

    专题六 第4讲 母题突破1 范围、最值问题2024年高考数学:

    这是一份专题六 第4讲 母题突破1 范围、最值问题2024年高考数学,共2页。试卷主要包含了已知椭圆C等内容,欢迎下载使用。

    高中数学高考第9讲 第2课时 定点、定值、范围、最值问题:

    这是一份高中数学高考第9讲 第2课时 定点、定值、范围、最值问题,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学高考63第九章 平面解析几何 高考专题突破五 第1课时 范围、最值问题无答案:

    这是一份高中数学高考63第九章 平面解析几何 高考专题突破五 第1课时 范围、最值问题无答案,共7页。试卷主要包含了已知P是椭圆C,椭圆C等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map