高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式课件PPT
展开
这是一份高中数学高考2022届高考数学一轮复习(新高考版) 第3章 高考专题突破一 第3课时 利用导数证明不等式课件PPT,共60页。PPT课件主要包含了故原不等式成立,极值点偏移问题,课时精练等内容,欢迎下载使用。
题型一 将不等式转化为函数的最值问题
因为曲线y=f(x)与曲线y=g(x)的一个公共点是A(1,1),且在点A处的切线互相垂直,所以g(1)=1,且f′(1)·g′(1)=-1,所以g(1)=a+1-b=1,g′(1)=-a-1-b=1,解得a=-1,b=-1.
所以h(x)在[1,+∞)上单调递增,
所以当x≥1时,h(x)≥h(1)=0,
待证不等式的两边含有同一个变量时,一般地,可以直接构造“左减右”的函数,有时对复杂的式子要进行变形,利用导数研究其单调性和最值,借助所构造函数的单调性和最值即可得证.
跟踪训练1 (2021·武汉调研)已知函数f(x)=ln x+ ,a∈R.(1)讨论函数f(x)的单调性;
当a≤0时,f′(x)>0,f(x)在(0,+∞)上单调递增.当a>0时,若x>a,则f′(x)>0,函数f(x)在(a,+∞)上单调递增;若00,所以当x>2时,f(x)0),
k=f′(1)=0,又f(1)=0,∴切点为(1,0).∴切线方程为y-0=0(x-1),即y=0.
(2)证明:当a≥1时,f(x)≥0.
证明 ∵a≥1,∴aex-1≥ex-1,∴f(x)≥ex-1-ln x-1.方法一 令φ(x)=ex-1-ln x-1(x>0),
∴φ′(x)在(0,+∞)上单调递增,又φ′(1)=0,∴当x∈(0,1)时,φ′(x)0,
∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=0,∴φ(x)≥0,∴f(x)≥φ(x)≥0,即证f(x)≥0.方法二 令g(x)=ex-x-1,∴g′(x)=ex-1.当x∈(-∞,0)时,g′(x)0,∴g(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,
∴g(x)min=g(0)=0,故ex≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.由ex≥x+1⇒ex-1≥x(当且仅当x=1时取“=”),由x-1≥ln x⇒x≥ln x+1(当且仅当x=1时取“=”),∴ex-1≥x≥ln x+1,即ex-1≥ln x+1,即ex-1-ln x-1≥0(当且仅当x=1时取“=”),即证f(x)≥0.
方法三 f(x)=aex-1-ln x-1,定义域为(0,+∞),
∴f′(x)在(0,+∞)上单调递增.又f′(1)=a-1≥0且x→0时,f′(x)→-∞,
∴当x∈(0,x0)时,f′(x)0,∴f(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
∴φ(x)在(0,1]上单调递减,∴φ(x)min=φ(1)=0,∴φ(x)≥0,
即f(x)min=f(x0)≥0,故f(x)≥0.
极值点偏移问题常作为压轴题出现,题型复杂多变.解决此类问题,先需理解此类问题的实质,巧妙消元、消参、构造函数,利用函数的性质解决问题.
例1 已知函数f(x)=xe-x.(1)求函数f(x)的单调区间;
解 f′(x)=e-x(1-x),令f′(x)>0得x2.
证明 方法一 (对称化构造法)构造辅助函数F(x)=f(x)-f(2-x),x>1,则F′(x)=f′(x)+f′(2-x)=e-x(1-x)+ex-2(x-1)=(x-1)(ex-2-e-x),∵当x>1时,x-1>0,ex-2-e-x>0,∴F′(x)>0,∴F(x)在(1,+∞)上单调递增,∴F(x)>F(1)=0,故当x>1时,f(x)>f(2-x), (*)由f(x1)=f(x2),x1≠x2,可设x1f(2-x2).又x12.方法二 (比值代换法)设00,不符合题意;
(2)求证:x1·x2>e2.
故ln x1x2=ln x1+ln x2=a(x1+x2)>2,即x1·x2>e2.
KESHIJINGLIAN
1.(2021·莆田模拟)已知函数f(x)=xex-1-ax+1,曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2.(1)求a的值及切线l的方程;
解 由f(x)=xex-1-ax+1,得f′(x)=(x+1)ex-1-a,因为曲线y=f(x)在点(2,f(2))处的切线l的斜率为3e-2,所以f′(2)=3e-a=3e-2,解得a=2,所以f(2)=2e-4+1=2e-3,故切线l的方程为y-(2e-3)=(3e-2)(x-2),即(3e-2)x-y-4e+1=0.所以a=2,切线l的方程为(3e-2)x-y-4e+1=0.
(2)证明:f(x)≥0.
证明 由(1),可得f(x)=xex-1-2x+1,f′(x)=(x+1)ex-1-2,所以当x∈(-∞,-1]时,f′(x)-1),则g′(x)=(x+2)ex-1>0,所以当x∈(-1,+∞)时,g(x)单调递增,即f′(x)单调递增,又因为f′(1)=0,所以当x∈(-1,1)时,f′(x)0,所以f(x)在(-∞,1)上单调递减,在(1,+∞)上单调递增.所以f(x)≥f(1)=0.
2.(2021·沧州七校联考)设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;
解 由f(x)=ex-2x+2a,x∈R,得f′(x)=ex-2,x∈R,令f′(x)=0,得x=ln 2.于是当x变化时,f′(x),f(x)的变化情况如下表:
故f(x)的单调递减区间是(-∞,ln 2),单调递增区间是(ln 2,+∞).f(x)在x=ln 2处取得极小值,极小值为f(ln 2)=2(1-ln 2+a),无极大值.
(2)求证:当a>ln 2-1且x>0时,ex>x2-2ax+1.
证明 设g(x)=ex-x2+2ax-1,x∈R.于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln 2-1时,g′(x)的最小值为g′(ln 2)=2(1-ln 2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln 2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex-x2+2ax-1>0,故ex>x2-2ax+1.
3.已知函数f(x)=eln x-ax(a∈R).(1)讨论f(x)的单调性;
①若a≤0,则f′(x)>0,f(x)在(0,+∞)上单调递增;
(2)当a=e时,证明:xf(x)-ex+2ex≤0.
当a=e时,由(1)知,f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.所以f(x)max=f(1)=-e,
所以当00时,f(x)≤g(x),
4.已知函数f(x)=ln x-ax(a∈R).(1)讨论函数f(x)在(0,+∞)上的单调性;
解 f(x)的定义域为(0,+∞),
当a≤0时,f′(x)>0,∴f(x)在(0,+∞)上单调递增,
(2)证明:ex-e2ln x>0恒成立.
证明 方法一 要证ex-e2ln x>0,即证ex-2>ln x,令φ(x)=ex-x-1,∴φ′(x)=ex-1.令φ′(x)=0,得x=0,∴x∈(-∞,0)时,φ′(x)0,∴φ(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增,∴φ(x)min=φ(0)=0,即ex-x-1≥0,即ex≥x+1,当且仅当x=0时取“=”.同理可证ln x≤x-1,当且仅当x=1时取“=”.
由ex≥x+1(当且仅当x=0时取“=”),可得ex-2≥x-1(当且仅当x=2时取“=”),又ln x≤x-1,即x-1≥ln x,当且仅当x=1时取“=”,所以ex-2≥x-1≥ln x且两等号不能同时成立,故ex-2>ln x.即证原不等式成立.方法二 令φ(x)=ex-e2ln x,φ(x)的定义域为(0,+∞),
∴φ′(x)在(0,+∞)上单调递增.
∴当x∈(0,x0)时,φ′(x)0,∴φ(x)在(0,x0)上单调递减,在(x0,+∞)上单调递增,
故φ(x)>0,即ex-e2ln x>0,即证原不等式成立.
5.(2018·全国Ⅰ)已知函数f(x)= -x+aln x.(1)讨论f(x)的单调性;
①若a≤2,则f′(x)≤0,当且仅当a=2,x=1时,f′(x)=0,所以f(x)在(0,+∞)上单调递减.②若a>2,令f′(x)=0,得
证明 由(1)知,f(x)存在两个极值点当且仅当a>2.由于f(x)的两个极值点x1,x2满足x2-ax+1=0,所以x1x2=1,不妨设x11.
由(1)知,g(x)在(0,+∞)上单调递减.又g(1)=0,从而当x∈(1,+∞)时,g(x)
相关课件
这是一份2024届高考数学一轮复习第3章第2节第3课时利用导数证明不等式——构造法证明不等式课件,共20页。
这是一份2024版高考数学一轮总复习第3章导数及其应用第2节导数的应用第3课时利用导数证明不等式__构造法证明不等式课件,共20页。
这是一份2024年高考数学一轮复习(新高考版) 第3章 §3.6 利用导数证明不等式课件PPT,共55页。PPT课件主要包含了考试要求,题型一,思维升华,题型二,题型三,适当放缩证明不等式,课时精练,基础保分练,综合提升练,拓展冲刺练等内容,欢迎下载使用。