第3章 数据分析初步(3.1-3.3)浙教版数学八年级下册单元测练(含答案)
展开
这是一份第3章 数据分析初步(3.1-3.3)浙教版数学八年级下册单元测练(含答案),共7页。
第3章 数据分析初步(3.1-3.3)时间:40分钟 总分:100分一、选择题(每小题5分,共40分)1.若一组数据3,4,5,x,6,7的平均数是5,则x的值是( )A.4 B.5 C.6 D.72.春节期间某商家不小心把单价20元/kg的大白兔糖2 kg与单价15元/kg的小白兔糖3 kg混在一起,为了保持原来的利润,则混合后的定价至少为( )A.20元/kg B.19元/kgC.17元/kg D.18元/kg3.我校男子足球队22名队员的年龄如下表所示:这些队员年龄的众数和中位数分别是( ) 年龄/岁141516171819人数213673A.18,17 B.17,18 C.18,17.5 D.17.5,184.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差: 甲乙丙丁平均数(cm)180185185180方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( )A.甲 B.乙 C.丙 D.丁5.A,B,C,D,E五名同学在一次数学测验中的平均成绩是80分,而A,B,C三人的平均成绩是78分,下列说法一定正确的是( )A.D,E的成绩比其他三人都好B.D,E两人的平均成绩是83分C.五人成绩的中位数一定是A,B,C中一人的成绩D.五人的成绩的众数一定是80分6.若一组数据x1+1,x2+1,…,xn+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为( )A.17,2 B.18,3 C.17,3 D.18,27.甲、乙两地去年12月前5天的日平均气温如图所示,下列描述错误的是( )A.两地气温的平均数相同B.甲地气温的中位数是6℃C.乙地气温的众数是4℃D.乙地气温相对比较稳定8.下列几种说法:①数据2,2,3,4的众数是2;②数据1,0,0,1,0的中位数和众数相等;③数据11,11,11,11,11的方差为1;④若一组数据a,b,c的平均数为10,则新数据a+1,b+1,c+1的平均数为10;⑤已知一组数据x1,x2,…,xn的方差是S2,则新的一组数据ax1+1,ax2+1,…,axn+1(a为常数,a≠0)的方差是a2S2.其中正确的有( )A.1个 B.2个 C.3个 D.4个 二、填空题(每小题5分,共20分)9.某招聘考试分笔试和面试两部分,最后按笔试成绩的60%、面试成绩的40%计算加权平均数作为总成绩.小明笔试成绩85分,面试成绩90分,则小明的总成绩是___分.10.某同学在使用计算器求20个数的时候,将88误输入为8,那么由此求出的平均数与实际平均数的差为___.11.一组数据2,3,x,y,12中,唯一众数是12,平均数是6,这组数据的中位数是___.12.数据a,4,2,5,3的平均数为b,且a和b是方程x2-4x+3=0的两个根,则这组数据的标准差是____.三、解答题(共40分)13.(8分)为了估计西瓜、苹果和香蕉三种水果一个月的销售量,某水果店对三种水果7天的销售量进行了统计,统计结果如图所示:(1)若西瓜、苹果和香蕉的售价分别为6元/kg、8元/kg和3元/kg,则这7天销售额最大的水果品种是__ __.A.西瓜 B.苹果 C.香蕉(2)估计一个月(按30天计算)该水果店可销售苹果多少千克?
14.(10分)某市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取某五天在同一时段的调查数据绘成如下表格.请回答下列问题: 时间(7:00~8:00)第一天第二天第三天第四天第五天需要租用自行车却 未租到车的人数(人)1 5001 2001 3001 3001 200(1)表格中的五个数据(人数)的中位数是多少?(2)由随机抽样估计,平均每天在7:00~8:00,需要租用公共自行车的人数是多少? 15.(10分)某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表: 笔试面试体能甲858075乙809073丙837990(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序;(2)该公司规定:笔试、面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分(不计其他因素条件),请你说明谁将被录用. 16.(12分)某学校有两个校区:南校和北校,这两个校区九年级学生各有300名,为了解这两个校区九年级学生的英语单词掌握情况,进行了抽样调查,过程如下:①收集数据,从南校和北校两个校区的九年级各随机抽取10名学生进行英语单词测试,测试成绩(百分制)如下:南校92 100 86 89 73 98 54 95 98 85北校100 100 94 83 74 86 75 100 73 75②整理、描述数据,按如下分数段整理、描述这两组样本数据: 成绩x/人数部门50≤x≤5960≤x≤6970≤x≤7980≤x≤8990≤x≤100南校10135北校00424(说明:成绩90分及以上为优秀,80~89分为良好,60~79分为合格,60分以下为不合格)③分析数据,对上述数据进行分析,分别求出了两组样本数据的平均数、中位数、众数、方差如下表: 校区平均数中位数众数方差南校8790.5______179.4北校86____________121.6④得出结论.结合上述统计全过程,回答下列问题:(1)补全③中的表格;(2)请估计北校九年级学生英语单词掌握优秀的人数;(3)你认为哪个校区的九年级学生英语单词掌握得比较好?说明你的理由.(至少从两个不同的角度说明推断的合理性) 参考答案一、选择题(每小题5分,共40分)1. B2. C3. A4. B5. B 6. D7. C 8. C 【解析】①因为2出现的次数最多,正确;②数据中的中位数和众数都为0,正确;③数据的方差为0,错误;④新数据的平均数应为11,错误;⑤新的一组数据的方差为a2S2.正确.二、填空题(每小题5分,共20分)9. 8710. 411. 312. 三、解答题(共40分)13. A(2) 解:×30=600(kg).
14.解:(1)表格中5个数据按从小到大的顺序排列为1 200,1 200,1 300,1 300,1 500,所以中位数是1 300;(2)平均每天需要租用自行车却未租到车的人数:(1 500+1 200+1 300+1 300+1 200)÷5=1 300,∵某市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天在7:00~8:00需要租用公共自行车的人数是1 300+700=2 000人. 15.解:(1)甲=(85+80+75)÷3=80(分),乙=(80+90+73)÷3=81(分),丙=(83+79+90)÷3=84(分),则从高到低确定三名应聘者的排名顺序为:丙,乙,甲;(2)∵公司规定:笔试、面试、体能得分分别不得低于80分,80分,70分,∴丙排除.甲的总分是:85×60%+80×30%+75×10%=82.5(分),乙的总分是:80×60%+90×30%+73×10%=82.3(分),∴甲的总分最高,甲被录用. 16.解:(1)98 84.5 100;(2)北校区九年级学生英语单词掌握优秀的人数为:×300=120(人);(3)我认为南校区的九年级学生英语单词掌握得比较好,理由如下:①南校区的九年级学生在英语单词测试中,平均数较高,表示南校区的九年级学生的英语单词掌握情况较好;②南校区的九年级学生在英语单词测试中,中位数较高,表示南校区英语单词掌握优秀的学生较多.(答案不唯一)