![第1章 平行线辅导讲义3:平行线及其判定(提高) 知识讲解(含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14031676/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![第1章 平行线辅导讲义3:平行线及其判定(提高) 知识讲解(含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14031676/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:初中数学七年级下册讲义(浙教版)
第1章 平行线辅导讲义3:平行线及其判定(提高) 知识讲解(含答案)
展开
平行线及其判定(提高)知识讲解撰稿:孙景艳 审稿: 吴婷婷【学习目标】1.熟练掌握平行线定义及画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线及平行公理1.平行线的定义在同一平面内,不相交的两条直线叫做平行线. 两直线平行,用符号“∥”表示. 如下图,两条直线互相平行,记作AB∥CD或a∥b.要点诠释:(1)同一平面内,两条直线的位置关系:相交和平行.(2)互相重合的直线通常看作一条直线,两条线段或射线平行是指它们所在的直线平行.2.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.3.平行公理及推论平行公理:经过已知直线外一点,有且只有一条直线与已知直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.4. 两条平行线间的距离
同时垂直于两条平行线,并且夹在这两条平行线间的线段的长度,叫做这两条平行线间的距离.要点诠释:(1)求两条平行线的距离的方法是在一条直线上任找一点,向另一条直线作垂线,垂线段的长度就是两条平行线的距离.(2) 两条平行线的位置确定后,它们的距离就是个定值,不随垂线段的位置的改变而改变,即两条平行线之间的距离处处相等.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:(1)平行线的判定是由角相等或互补,得出平行,即由数推形.(2)今后我们用符号“∵”表示“因为”,用“∴”表示“所以”.【典型例题】类型一、平行公理及推论1.在同一平面内,下列说法:(1)过两点有且只有一条直线;(2)两条直线有且只有一个公共点;(3)过一点有且只有一条直线与已知直线垂直;(4)过一点有且只有一条直线与已知直线平行. 其中正确的个数为:( ) .A.1个 B.2个 C.3个 D.4个【答案】B 【解析】正确的是:(1)(3).【总结升华】对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解,对不同的几何语言的表达要注意区分不同表述之间的联系和区别.举一反三:【变式】下列说法正确的个数是 ( ) .(1)直线a、b、c、d,如果a∥b、c∥b、c∥d,则a∥d.(2)两条直线被第三条直线所截,同旁内角的平分线互相垂直.(3)两条直线被第三条直线所截,同位角相等.(4)在同一平面内,如果两直线都垂直于同一条直线,那么这两直线平行. A.1个 B .2个 C.3个 D.4个【答案】B 2.下面两条平行线之间的三个图形,图 ③的面积最大,图 ②的面积最小.
【思路点拨】两个完全一样的三角形可以拼成一个平行四边形,每个三角形的面积是拼成的平行四边形面积的一半;两个完全一样的梯形可以拼成一个平行四边形,每个梯形的面积是拼成的平行四边形面积的一半.因为高相同,所以可以通过比较平行四边形的底的长短,得出平行四边形面积的大小. 【答案】图3,图2【解析】解:因为它们的高相等,三角形的底是8,8÷2=4,梯形的上、下底之和除以2,(2+7)÷2=4.5;5>4.5>4;
所以,图3平行四边形的面积最大,图2三角形的面积最小.
【总结升华】根据平行线的性质,得出梯形、三角形、平行四边形的高相等,求出三角形底的一半,梯形上、下底之和的一半,与平行四边形的底进行比较,由此得出正确答案.举一反三:【变式】下图是一个方形螺线.已知相邻均为1厘米,则螺线总长度是 厘米.【答案】35类型二、平行线的判定3. 如图,给出下列四个条件:(1)AC=BD;(2)∠DAC=∠BCA;(3)∠ABD=∠CDB;(4)∠ADB=∠CBD,其中能使AD∥BC的条件有 ( ).A.(1)(2) B.(3)(4) C.(2)(4) D.(1)(3)(4)【思路点拨】欲证AD∥BC,在图中发现AD、BC被一直线所截,故可按同位角相等、内错角相等、同旁内角互补,两直线平行补充条件.【答案】C 【解析】从分解图形入手,即寻找AD、BC的截线.【总结升华】从题目的结论出发分析所要说明的结论能成立,必须具备的是哪些条件,再看这些条件成立又需具备什么条件,直到追溯到已知条件为止.举一反三:【变式】一个学员在广场上驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A.第一次向左拐30°,第二次向右拐30° B.第一次向右拐50°,第二次向左拐130° C.第一次向右拐50°,第二次向右拐130° D.第一次向左拐50°,第二次向左拐130°【答案】A提示:“方向相同”有两层含义,即路线平行且方向相同,在此基础上准确画出示意图. 图B显然不同向,因为路线不平行. 图C中,∠1=180°-130°=50°,路线平行但不同向. 图D中,∠1=180°-130°=50°,路线平行但不同向. 只有图A路线平行且同向,故应选A.4. 如图所示,已知∠B=25°,∠BCD=45°,∠CDE=30°,∠E=10°.试说明AB∥EF的理由.【思路点拨】利用辅助线把AB、EF联系起来.【答案与解析】 解法1:如图所示,在∠BCD的内部作∠BCM=25°,在∠CDE的内部作∠EDN=10°. ∵ ∠B=25°,∠E=10°(已知), ∴ ∠B=∠BCM,∠E=∠EDN(等量代换). ∴ AB∥CM,EF∥DN(内错角相等,两直线平行). 又∵ ∠BCD=45°,∠CDE=30°(已知), ∴ ∠DCM=20°,∠CDN=20°(等式性质).∴ ∠DCM=∠CDN(等量代换).∴ CM∥DN(内错角相等,两直线平行). ∵ AB∥CM,EF∥DN(已证), ∴ AB∥EF(平行线的传递性). 解法2:如图所示,分别向两方延长线段CD交EF于M点、交AB于N点. ∵ ∠BCD=45°,∴ ∠NCB=135°. ∵ ∠B=25°, ∴ ∠CNB=180°-∠NCB-∠B=20°(三角形的内角和等于180°). 又∵∠CDE=30°,∴∠EDM=150°. 又∵∠E=10°, ∴ ∠EMD=180°-∠EDM-∠E=20°(三角形的内角和等于180°). ∴ ∠CNB=∠EMD(等量代换). 所以AB∥EF(内错角相等,两直线平行).【总结升华】判定两条直线平行的方法有四种,选择哪种方法要根据问题提供的条件来灵活选取. 举一反三:【高清课堂:平行线及判定403102经典例题2 】【变式】已知,如图,BE平分ABD,DE平分CDB,且1与2互余,试判断直线AB、CD的位置关系,请说明理由.【答案】解:AB∥CD,理由如下: ∵ BE平分∠ABD,DE平分∠CDB, ∴ ∠ABD=2∠1,∠CDB=2∠2. 又∵ ∠1+∠2=90°, ∴ ∠ABD+∠CDB=180°. ∴ AB∥CD(同旁内角互补,两直线平行).
![英语朗读宝](http://img.51jiaoxi.com/images/27f0ad84943772f8cdf3a353ba2877c5.jpg)