高中数学高考第3讲 第1课时 两角和与差的正弦、余弦和正切公式
展开
这是一份高中数学高考第3讲 第1课时 两角和与差的正弦、余弦和正切公式,共14页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
第3讲 简单的三角恒等变换
一、知识梳理
1.两角和与差的正弦、余弦和正切公式
sin(α±β)=sin_αcos__β±cos_αsin__β;
cos(α∓β)=cos_αcos__β±sin_αsin__β;
tan(α±β)=.
2.二倍角的正弦、余弦、正切公式
sin 2α=2sin_αcos__α;
cos 2α=cos2α-sin2α=2cos2α-1=1-2sin2α;
tan 2α=.
3.三角函数公式的关系
常用结论
四个必备结论
(1)降幂公式:cos2α=,sin2α=.
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
(3)tan α±tan β=tan(α±β)(1±tan αtan β),
1+sin 2α=(sin α+cos α)2,
1-sin 2α=(sin α-cos α)2,
sin α±cos α=sin.
(4)辅助角公式
asin x+bcos x=sin (x+φ),其中tan φ=.
二、教材衍化
1.若cos α=-.α是第三象限的角,则sin=________.
解析:因为α是第三象限角,所以sin α=-=-,所以sin=-×+×=-.
答案:-
2.sin 347°cos 148°+sin 77°cos 58°=________.
解析:sin 347°cos 148°+sin 77°cos 58°
=sin(270°+77°)cos(90°+58°)+sin 77°cos 58°
=(-cos 77°)·(-sin 58°)+sin 77°cos 58°
=sin 58°cos 77°+cos 58°sin 77°
=sin(58°+77°)=sin 135°=.
答案:
3.化简:=________.
解析:原式=
===.
答案:
一、思考辨析
判断正误(正确的打“√”,错误的打“×”)
(1)两角和与差的正弦、余弦公式中的角α,β是任意角.( )
(2)两角和与差的正切公式中的角α,β是任意角.( )
(3)cos 80°cos 20°-sin 80°sin 20°=cos(80°-20°)=cos 60°=.( )
(4)公式tan(α+β)=可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( )
(5)存在实数α,使tan 2α=2tan α.( )
答案:(1)√ (2)× (3)× (4)× (5)√
二、易错纠偏
(1)不会用公式找不到思路;
(2)不会合理配角出错.
1.sin 15°+sin 75°的值是________.
解析:sin 15°+sin 75°=sin 15°+cos 15°=sin(15°+45°)=sin 60°=.
答案:
2.若tan α=3,tan(α-β)=2,则tan β=________.
解析:tan β=tan[α-(α-β)]=
==.
答案:
第1课时 两角和与差的正弦、余弦和正切公式
考点一 和差公式的直接应用(基础型)
复习指导1.会用向量的数量积推导出两角差的余弦公式.
2.能从两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系.
核心素养:逻辑推理、数学运算
1.已知sin α=,α∈,tan(π-β)=,则tan(α-β)的值为( )
A.- B.
C. D.-
解析:选A.因为sin α=,α∈,
所以cos α=-=-,
所以tan α==-.
因为tan(π-β)==-tan β,
所以tan β=-,
则tan(α-β)==-.
2.(2019·高考全国卷Ⅱ)已知α∈,2sin 2α=cos 2α+1,则sin α=( )
A. B.
C. D.
解析:选B.由2sin 2α=cos 2α+1,得4sin αcos α=1-2sin2α+1,即2sin αcos α=1-sin2α.因为α∈,所以cos α=,
所以2sin α=1-sin2 α,
解得sin α=,故选B.
3.已知α∈,sin α=.
(1)求sin的值;
(2)求cos的值.
解:(1)因为α∈,sin α=,
所以cos α=-=-,
故sin=sin cos α+cos sin α
=×+×=-.
(2)由(1)知sin 2α=2sin αcos α=2××=-,cos 2α=1-2sin2α=1-2×=,所以cos=cos cos 2α+sin sin 2α=×+×=-.
利用三角函数公式时应注意的问题
(1)首先要注意公式的结构特点和符号变化规律.例如两角差的余弦公式可简记为:“同名相乘,符号反”.
(2)应注意与同角三角函数基本关系、诱导公式的综合应用.
(3)应注意配方法、因式分解和整体代换思想的应用.
考点二 三角函数公式的逆用与变形应用(基础型)
能运用三角函数公式进行简单的恒等变换(包括引导导出积化和差、和差化积、半角公式,但不要求记忆).
核心素养:数学运算
(1)在△ABC中,若tan Atan B=tan A+tan B+1,则cos C的值为( )
A.- B.
C. D.-
(2)(2018·高考全国卷Ⅱ)已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)=________.
【解析】 (1)由tan Atan B=tan A+tan B+1,可得=-1,
即tan(A+B)=-1,又(A+B)∈(0,π),
所以A+B=,则C=,cos C=.
(2)因为sin α+cos β=1,cos α+sin β=0,
所以sin2α+cos2β+2sin αcos β=1 ①,
cos2α+sin2β+2cos αsin β=0 ②,
①②两式相加可得sin2α+cos2α+sin2β+cos2β+2(sin αcos β+cos αsin β)=1,
所以sin(α+β)=-.
【答案】 (1)B (2)-
(1)三角函数公式活用技巧
①逆用公式应准确找出所给式子与公式的异同,创造条件逆用公式;
②tan αtan β,tan α+tan β(或tan α-tan β),tan(α+β)(或tan(α-β))三者中可以知二求一,注意公式的正用、逆用和变形使用.
(2)三角函数公式逆用和变形使用应注意的问题
①公式逆用时一定要注意公式成立的条件和角之间的关系;
②注意特殊角的应用,当式子中出现,1,,等这些数值时,一定要考虑引入特殊角,把“值变角”以便构造适合公式的形式.
1.(1-tan215°)cos215°的值等于( )
A. B.1
C. D.
解析:选C.(1-tan215°)cos215°=cos215°-sin215°=cos 30°=.
2.已知sin 2α=,则cos2=( )
A.- B.
C.- D.
解析:选D.cos2==+sin 2α=+×=.
3.(一题多解)cos 15°-4sin215°cos 15°=( )
A. B.
C.1 D.
解析:选D.法一:cos 15°-4sin215°cos 15°=cos 15°-2sin 15°·2sin 15°cos 15°=cos 15°-2sin 15°·sin 30°=cos 15°-sin 15°=2cos(15°+30°)=2cos 45°=.故选D.
法二:因为cos 15°=,sin 15°=,所以cos 15°-4sin215°·cos 15°=×-4××=×(-2+)=×(2-2)=.故选D.
考点三 三角公式的灵活应用(综合型)
三角公式的灵活应用实质是三角恒等变换,恒等变换前需清楚已知式中角的差异、函数名称的差异、运算结构的差异,寻求联系,实现转化.
角度一 三角函数公式中变“角”
(2020·黑龙江大庆实验中学考前训练)已知α,β∈,sin(α+β)=-,sin=,则cos=________.
【解析】 由题意知,α+β∈,sin(α+β)=-
相关试卷
这是一份新高考数学一轮复习课时讲练 第4章 第3讲 两角和与差的正弦、余弦和正切公式 (含解析),共17页。试卷主要包含了二倍角的正弦、余弦、正切公式,三角函数公式关系等内容,欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第5章 第3讲 第1课时 两角和与差的正弦、余弦和正切公式 (含解析),共14页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份高中数学高考第5讲 两角和与差的正弦、余弦和正切公式,共6页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。