高中数学高考第7讲 解三角形应用举例
展开
这是一份高中数学高考第7讲 解三角形应用举例,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
第7讲 解三角形应用举例一、选择题1.在相距2 km的A,B两点处测量目标点C,若∠CAB=75°,∠CBA=60°,则A,C两点之间的距离为( )A. km B. kmC. km D.2 km解析 如图,在△ABC中,由已知可得∠ACB=45°,∴=,∴AC=2×=(km).答案 A2.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是( )A.10海里 B.10海里C.20海里 D.20海里解析 如图所示,易知,在 △ABC中,AB=20,∠CAB=30°,∠ACB=45°,根据正弦定理得=,解得BC=10(海里).答案 A3.(2017·合肥调研)如图所示,已知两座灯塔A和B与海洋观察站C的距离都等于a km,灯塔A在观察站C的北偏东20°,灯塔B在观察站C的南偏东40°,则灯塔A与B的距离为( )A.a km B. a kmC.a km D.2a km解析 由题图可知,∠ACB=120°,由余弦定理,得AB2=AC2+BC2-2AC·BC·cos∠ACB=a2+a2-2·a·a·=3a2,解得AB=a(km).答案 B4.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的最短时间为6 min,则客船在静水中的速度为( )A.8 km/h B.6 km/hC.2 km/h D.10 km/h解析 设AB与河岸线所成的角为θ,客船在静水中的速度为v km/h,由题意知,sin θ==,从而cos θ=,所以由余弦定理得=+12-2××2×1×,解得v=6.选B.答案 B5.如图,测量河对岸的塔高AB时可以选与塔底B在同一水平面内的两个测点C与D,测得∠BCD=15°,∠BDC=30°,CD=30,并在点C测得塔顶A的仰角为60°,则塔高AB等于( )A.5 B.15C.5 D.15解析 在△BCD中,∠CBD=180°-15°-30°=135°.由正弦定理得=,所以BC=15.在Rt△ABC中,AB=BCtan ∠ACB=15×=15.答案 D二、填空题6.如图所示,一艘海轮从A处出发,测得灯塔在海轮的北偏东15°方向,与海轮相距20海里的B处,海轮按北偏西60°的方向航行了30分钟后到达C处,又测得灯塔在海轮的北偏东75°的方向,则海轮的速度为________海里/分.解析 由已知得∠ACB=45°,∠B=60°,由正弦定理得=,所以AC===10,所以海轮航行的速度为=(海里/分).答案 7.江岸边有一炮台高30 m,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析 如图,OM=AOtan 45°=30(m),ON=AOtan 30°=×30=10(m),在△MON中,由余弦定理得,MN===10(m).答案 108.在200 m高的山顶上,测得山下一塔顶和塔底的俯角分别是30°,60°,则塔高为________m.解析 如图,由已知可得∠BAC=30°,∠CAD=30°,∴∠BCA=60°,∠ACD=30°,∠ADC=120°.又AB=200 m,∴AC=(m).在△ACD中,由余弦定理得,AC2=2CD2-2CD2·cos 120°=3CD2,∴CD=AC=(m).答案 三、解答题9.如图,渔船甲位于岛屿A的南偏西60°方向的B处,且与岛屿A相距12海里,渔船乙以10海里/时的速度从岛屿A出发沿正北方向航行,若渔船甲同时从B处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.解 (1)依题意知,∠BAC=120°,AB=12,AC=10×2=20,∠BCA=α.在△ABC中,由余弦定理,得BC2=AB2+AC2-2AB·AC·cos∠BAC=122+202-2×12×20×cos 120°=784.解得BC=28.所以渔船甲的速度为=14海里/时.(2)在△ABC中,因为AB=12,∠BAC=120°,BC=28,∠BCA=α,由正弦定理,得=,即sin α===.10.(2015·安徽卷)在△ABC中,A=,AB=6,AC=3,点D在BC边上,AD=BD,求AD的长.解 设△ABC的内角A,B,C所对边的长分别是a,b,c,由余弦定理,得a2=b2+c2-2bccos∠BAC=(3)2+62-2×3×6×cos=18+36-(-36)=90,所以a=3.又由正弦定理,得sin B===,由题设知0<B<,所以cos B===.在△ABD中,因为AD=BD,所以∠ABD=∠BAD,所以∠ADB=π-2B.由正弦定理,得AD====.11.(2016·全国Ⅲ卷)在△ABC中,B=,BC边上的高等于BC,则cos A=( )A. B.C.- D.-解析 设BC边上的高AD交BC于点D,由题意B=,BD=BC,DC=BC,tan∠BAD=1,tan∠CAD=2,tan A==-3,所以cos A=-.答案 C12.如图所示,D,C,B三点在地面同一直线上,DC=a,从D,C两点测得A点仰角分别为α,β(α<β),则点A离地面的高AB等于( )A. B.C. D.解析 结合题图示可知,∠DAC=β-α.在△ACD中,由正弦定理得:=,∴AC==.在Rt△ABC中,AB=ACsin β=.答案 A13.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为75°,30°,此时气球的高是60 m,则河流的宽度BC等于________m.解析 如图,∠ACD=30°,∠ABD=75°,AD=60 m,在Rt△ACD中,CD===60(m),在Rt△ABD中,BD====60(2-)(m),∴BC=CD-BD=60-60(2-)=120(-1)(m).答案 120(-1)14.如图,在海岸A处,发现北偏东45°方向距A为(-1)海里的B处有一艘走私船,在A处北偏西75°方向,距A为2海里的C处的缉私船奉命以10海里/时的速度追截走私船.此时走私船正以10海里/时的速度从B处向北偏东30°方向逃窜,问缉私船沿什么方向能最快追上走私船?并求出所需要的时间(注:≈2.449).解 设缉私船应沿CD方向行驶t小时,才能最快截获(在D点)走私船,则有CD=10t(海里),BD=10t(海里).在△ABC中,∵AB=(-1)海里,AC=2海里,∠BAC=45°+75°=120°,根据余弦定理,可得BC==(海里).根据正弦定理,可得sin∠ABC===.∴∠ABC=45°,易知CB方向与正北方向垂直,从而∠CBD=90°+30°=120°.在△BCD中,根据正弦定理,可得sin∠BCD===,∴∠BCD=30°,∠BDC=30°,∴BD=BC=(海里),则有10t=,t=≈0.245小时=14.7分钟.故缉私船沿北偏东60°方向,需14.7分钟才能追上走私船.
相关试卷
这是一份(新高考)高考数学一轮复习讲练测 第5章 第7讲 解三角形应用举例及综合问题 (2份打包,原卷版+教师版),文件包含新高考高考数学一轮复习讲练测第5章第7讲解三角形应用举例及综合问题原卷版doc、新高考高考数学一轮复习讲练测第5章第7讲解三角形应用举例及综合问题原卷版pdf、新高考高考数学一轮复习讲练测第5章第7讲解三角形应用举例及综合问题教师版pdf、新高考高考数学一轮复习讲练测第5章第7讲解三角形应用举例及综合问题教师版doc等4份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份(新高考)高考数学一轮复习素养练习 第5章 第7讲 解三角形应用举例及综合问题 (含解析),共20页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。
这是一份高中数学高考第27讲 解三角形应用举例(达标检测)(教师版),共26页。