|教案下载
终身会员
搜索
    上传资料 赚现金
    高中数学高考第2节 古典概型 教案
    立即下载
    加入资料篮
    高中数学高考第2节 古典概型 教案01
    高中数学高考第2节 古典概型 教案02
    高中数学高考第2节 古典概型 教案03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第2节 古典概型 教案

    展开
    这是一份高中数学高考第2节 古典概型 教案,共9页。


    1.基本事件的特点
    (1)任何两个基本事件是互斥的.
    (2)任何事件(除不可能事件)都可以表示成基本事件的和.
    2.古典概型
    (1)具有以下两个特点的概率模型称为古典概率模型,简称古典概型.
    ①有限性:试验中所有可能出现的基本事件只有有限个.
    ②等可能性:每个基本事件出现的可能性相等.
    (2)概率计算公式:P(A)=eq \f(A包含的基本事件的个数,基本事件的总数).
    eq \O([常用结论])
    确定基本事件个数的三种方法
    (1)列举法:此法适合基本事件较少的古典概型.
    (2)列表法(坐标法):此法适合多个元素中选定两个元素的试验.
    (3)树状图法:适合有顺序的问题及较复杂问题中基本事件个数的探求.
    一、思考辨析(正确的打“√”,错误的打“×”)
    (1)“在适宜条件下,种下一粒种子观察它是否发芽”属于古典概型,其基本事件是“发芽与不发芽”.( )
    (2)掷一枚硬币两次,出现“两个正面”“一正一反”“两个反面”,这三个事件是等可能事件.( )
    (3)某袋中装有大小均匀的三个红球、两个黑球、一个白球,那么每种颜色的球被摸到的可能性相同.( )
    (4)“从长为1的线段AB上任取一点C,求满足AC≤eq \f(1,3)的概率是多少”是古典概型.( )
    [答案] (1)× (2)× (3)× (4)×
    二、教材改编
    1.从1,2,3,4,5中随机取出三个不同的数,则其和为偶数的基本事件个数为( )
    A.4 B.5 C.6 D.7
    C [任取三个数和为偶数共有:(1,2,3),(1,2,5),(1,3,4),(1,4,5),(2,3,5),(3,4,5)共6个,故选C.]
    2.袋中装有6个白球,5个黄球,4个红球,从中任取一球,则取到白球的概率为( )
    A.eq \f(2,5) B.eq \f(4,15) C.eq \f(3,5) D.eq \f(2,3)
    A [从袋中任取一球,有15种取法,其中取到白球的取法有6种,则所求概率为P=eq \f(6,15)=eq \f(2,5).]
    3.现从甲、乙、丙3人中随机选派2人参加某项活动,则甲被选中的概率为 .
    eq \f(2,3) [从甲、乙、丙3人中随机选派2人参加某项活动,有甲乙,甲丙,乙丙三种可能,则甲被选中的概率为eq \f(2,3).]
    4.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意取出1个球,则2次取出的球颜色不同的概率是 .
    eq \f(2,3) [由题意,知基本事件有(红,红),(红,白),(红,黑),(白,红),(白,白),(白,黑),(黑,红),(黑,白),(黑,黑),共9种,其中2次取出的球颜色相同有3种,所以2次取出的球颜色不同的概率为1-eq \f(3,9)=eq \f(2,3).]
    考点1 古典概型的概率计算
    求古典概型概率的步骤
    (1)判断本试验的结果是否为等可能事件,设出所求事件A;
    (2)分别求出基本事件的总数n与所求事件A中所包含的基本事件个数m;
    (3)利用公式P(A)=eq \f(m,n),求出事件A的概率.
    (1)(2019·全国卷Ⅱ)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为( )
    A.eq \f(2,3) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)
    (2)(2019·全国卷Ⅲ)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是( )
    A.eq \f(1,6) B.eq \f(1,4) C.eq \f(1,3) D.eq \f(1,2)
    (1)B (2)D [(1)设5只兔子中测量过某项指标的3只为a1,a2,a3,未测量过这项指标的2只为b1,b2,则从5只兔子中随机取出3只的所有可能情况为(a1,a2,a3),(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a1,b1,b2),(a2,a3,b1),(a2,a3,b2),(a2,b1,b2),(a3,b1,b2),共10种可能.其中恰有2只测量过该指标的情况为(a1,a2,b1),(a1,a2,b2),(a1,a3,b1),(a1,a3,b2),(a2,a3,b1),(a2,a3,b2),共6种可能.
    故恰有2只测量过该指标的概率为eq \f(6,10)=eq \f(3,5).故选B.
    (2)设两位男同学分别为A,B,两位女同学分别为a,b,则用“树形图”表示四位同学排成一列所有可能的结果如图所示.
    由图知,共有24种等可能的结果,其中两位女同学相邻的结果(画“√”的情况)共有12种,故所求概率为eq \f(12,24)=eq \f(1,2).故选D.]
    (3)(2019·天津高考)2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有72,108,120人,现采用分层抽样的方法,从该单位上述员工中抽取25人调查专项附加扣除的享受情况.
    ①应从老、中、青员工中分别抽取多少人?
    ②抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为A,B,C,D,E,F.享受情况如下表,其中“○”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
    a.试用所给字母列举出所有可能的抽取结果;
    b.设M为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件M发生的概率.
    [解] ①由已知得老、中、青员工人数之比为6∶9∶10,由于采用分层抽样的方法从中抽取25位员工,因此应从老、中、青员工中分别抽取6人、9人、10人.
    ②a.从已知的6人中随机抽取2人的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F},共15种.
    b.由表格知,符合题意的所有结果为{A,B},{A,D},{A,E},{A,F},{B,D},{B,E},{B,F},{C,E},{C,F},{D,F},{E,F},共11种.
    所以,事件M发生的概率P(M)=eq \f(11,15).
    求古典概型概率的关键是列出所有可能的结果.
    [教师备选例题]
    某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游.
    (1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;
    (2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率.
    [解] (1)由题意知,从6个国家中任选两个国家,其一切可能的结果组成的基本事件有:{A1,A2},{A1,A3},{A1,B1},{A1,B2},{A1,B3},{A2,A3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},{B1,B2},{B1,B3},{B2,B3},共15个.
    所选两个国家都是亚洲国家的事件所包含的基本事件有:{A1,A2},{A1,A3},{A2,A3},共3个,则所求事件的概率为P=eq \f(3,15)=eq \f(1,5).
    (2)从亚洲国家和欧洲国家中各任选一个,其一切可能的结果组成的基本事件有:{A1,B1},{A1,B2},{A1,B3},{A2,B1},{A2,B2},{A2,B3},{A3,B1},{A3,B2},{A3,B3},共9个.
    包括A1但不包括B1的事件所包含的基本事件有:{A1,B2},{A1,B3},共2个,则所求事件的概率为P=eq \f(2,9).
    1.(2019·江苏高考)从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是 .
    eq \f(7,10) [法一:设3名男同学分别为A,B,C,2名女同学分别为a,b,则所有等可能事件分别为AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab,共10个,选出的2名同学中至少有1名女同学包含的基本事件分别为Aa,Ab,Ba,Bb,Ca,Cb,ab,共7个,故所求概率为eq \f(7,10).
    法二:同方法一,得所有等可能事件共10个,选出的2名同学中没有女同学包含的基本事件分别为AB,AC,BC,共3个,故所求概率为1-eq \f(3,10)=eq \f(7,10).]
    2.(2018·天津高考)已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160. 现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
    (1)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
    (2)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
    ①试用所给字母列举出所有可能的抽取结果;
    ②设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
    [解] (1)因为甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,所以应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
    (2)①从抽取的7名同学中随机抽取2名同学的所有可能结果为{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
    ②不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
    所以事件M发生的概率P(M)=eq \f(5,21).
    考点2 古典概型与其他知识的交汇问题
    求解古典概型的交汇问题,关键是把相关的知识转化为事件,然后利用古典概型的有关知识解决,其解题流程为:
    古典概型与平面向量相结合
    从集合{1,2,3,4}中随机抽取一个数a,从集合{1,2,3}中随机抽取一个数b,则向量m=(a,b)与向量n=(2,1)共线的概率为( )
    A.eq \f(1,6) B.eq \f(1,3) C.eq \f(1,4) D.eq \f(1,2)
    A [由题意可知,向量m=(a,b)的所有可能结果有:
    (1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),共12个,∵向量m=(a,b)与向量n=(2,1)共线,∴a-2b=0,即a=2b,∴有(2,1),(4,2),共2个,故所求概率为eq \f(1,6).]
    解答本题的关键是根据向量m与n共线,得到a与b的关系,再从所有基本事件中找出满足条件的基本事件的个数.
    古典概型与解析几何相结合
    将一颗骰子先后投掷两次分别得到点数a,b,则直线ax+by=0与圆(x-2)2+y2=2有公共点的概率为 .
    eq \f(7,12) [依题意,将一颗骰子先后投掷两次得到的点数所形成的数组(a,b)有(1,1),(1,2),(1,3),…,(6,6),共36种,其中满足直线ax+by=0与圆(x-2)2+y2=2有公共点,即满足eq \f(2a,\r(a2+b2))≤eq \r(2),即a≤b,则当a=1时,b=1,2,3,4,5,6,共有6种,当a=2时,b=2,3,4,5,6,共5种,同理当a=3时,有4种,a=4时,有3种,a=5时,有2种,a=6时,有1种,故共6+5+4+3+2+1=21种,因此所求的概率等于eq \f(21,36)=eq \f(7,12).]
    解答本题的关键是根据直线与圆有公共点得到a≤b.再从所有基本事件中找出满足a≤b的基本事件的个数.
    古典概型与方程、不等式、函数相结合
    已知a=lg0.55,b=lg32,c=20.3,d=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))2,从这四个数中任取一个数m,使函数f(x)=eq \f(1,3)x3+mx2+x+2有极值点的概率为( )
    A.eq \f(1,4) B.eq \f(1,2) C.eq \f(3,4) D.1
    B [f′(x)=x2+2mx+1,
    由题意知Δ=4m2-4>0,解得m>1或m<-1,
    而a=lg0.55<-2,0<b=lg32<1,c=20.3>1,
    0<d=eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2)))eq \s\up20(2)<1,满足条件的有两个,分别是a,c.
    因此所求的概率为P=eq \f(2,4)=eq \f(1,2),故选B.]
    解答本题的关键是根据函数f(x)有极值点得到m的取值范围,再根据m的取值范围确定满足条件的个数.
    1.已知a∈{-2,0,1,2,3},b∈{3,5},则函数f(x)=(a2-2)ex+b为减函数的概率是( )
    A.eq \f(3,10) B.eq \f(3,5) C.eq \f(2,5) D.eq \f(1,5)
    C [函数f(x)=(a2-2)ex+b为减函数,则a2-2<0,又a∈{-2,0,1,2,3},故只有a=0,a=1满足题意,又b∈{3,5},所以函数f(x)=(a2-2)ex+b为减函数的概率是eq \f(2×2,5×2)=eq \f(2,5).故选C.]
    2.设平面向量a=(m,1),b=(2,n),其中m,n∈{1,2,3,4},记“a⊥(a-b)”为事件A,则事件A发生的概率为( )
    A.eq \f(1,8) B.eq \f(1,4) C.eq \f(1,3) D.eq \f(1,2)
    A [有序数对(m,n)的所有可能情况为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.由a⊥(a-b)得m2-2m+1-n=0,即n=(m-1)2,由于m,n∈{1,2,3,4},故事件A包含的基本事件为(2,1)和(3,4),共2个,所以P(A)=eq \f(2,16)=eq \f(1,8).故选A.]
    3.将一枚质地均匀的骰子投掷两次,得到的点数依次记为a和b,则方程ax2+bx+1=0有实数解的概率是( )
    A.eq \f(7,36) B.eq \f(1,2) C.eq \f(19,36) D.eq \f(5,18)
    C [投掷骰子两次,所得的点数a和b满足的关系为eq \b\lc\{\rc\ (\a\vs4\al\c1(1≤a≤6,a∈N*,,1≤b≤6,b∈N*.))∴a和b的组合有36种,若方程ax2+bx+1=0有实数解,则Δ=b2-4a≥0,∴b2≥4a.
    当b=1时,没有a符合条件;当b=2时,a可取1;当b=3时,a可取1,2;当b=4时,a可取1,2,3,4;当b=5时,a可取1,2,3,4,5,6;当b=6时,a可取1,2,3,4,5,6.
    满足条件的组合有19种,则方程ax2+bx+1=0有实数解的概率P=eq \f(19,36),故选C.]
    员工
    项目
    A
    B
    C
    D
    E
    F
    子女教育


    ×

    ×

    继续教育
    ×
    ×

    ×


    大病医疗
    ×
    ×
    ×

    ×
    ×
    住房贷款利息


    ×
    ×


    住房租金
    ×
    ×

    ×
    ×
    ×
    赡养老人


    ×
    ×
    ×

    相关教案

    高中数学高考高三数学人教版A版数学(理)高考一轮复习教案:9 5 古典概型 Word版含答案: 这是一份高中数学高考高三数学人教版A版数学(理)高考一轮复习教案:9 5 古典概型 Word版含答案,共13页。

    高中数学高考第4节 古典概型与几何概型 教案: 这是一份高中数学高考第4节 古典概型与几何概型 教案,共20页。

    第10章 第4节 古典概型教案: 这是一份第10章 第4节 古典概型教案,共9页。教案主要包含了教材概念·结论·性质重现,基本技能·思想·活动体验等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map