高中数学高考第3节 利用导数解决函数的极值、最值 教案
展开1.函数的极值
函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.
函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.
极大值点、极小值点统称为极值点,极大值、极小值统称为极值.
2.函数的最值
(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.
(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.
eq \O([常用结论])
1.若函数在开区间(a,b)内的极值点只有一个,则相应极值点为函数的最值点.
2.若函数在闭区间[a,b]的最值点不是端点,则最值点亦为极值点.
一、思考辨析(正确的打“√”,错误的打“×”)
(1)函数的极大值不一定比极小值大.( )
(2)对可导函数f(x),f′(x0)=0是x0点为极值点的充要条件.
( )
(3)函数的极大值一定是函数的最大值.( )
(4)开区间上的单调连续函数无最值.( )
[答案] (1)√ (2)× (3)× (4)√
二、教材改编
1.函数f(x)的定义域为R,导函数f′(x)的图象如图所示,则函数f(x)( )
A.无极大值点、有四个极小值点
B.有三个极大值点、一个极小值点
C.有两个极大值点、两个极小值点
D.有四个极大值点、无极小值点
C [设f′(x)的图象与x轴的4个交点从左至右依次为x1,x2,x3,x4.
当x<x1时,f′(x)>0,f(x)为增函数,
当x1<x<x2时,f′(x)<0,f(x)为减函数,则x=x1为极大值点,同理,x=x3为极大值点,x=x2,x=x4为极小值点,故选C.]
2.设函数f(x)=eq \f(2,x)+ln x,则( )
A.x=eq \f(1,2)为f(x)的极大值点
B.x=eq \f(1,2)为f(x)的极小值点
C.x=2为f(x)的极大值点
D.x=2为f(x)的极小值点
D [f′(x)=-eq \f(2,x2)+eq \f(1,x)=eq \f(x-2,x2)(x>0),
当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,
所以x=2为f(x)的极小值点.]
3.函数y=xex的最小值是 .
-eq \f(1,e) [因为y=xex,所以y′=ex+xex=(1+x)ex.当x>-1时,y′>0;当x<-1时,y′<0,所以当x=-1时函数取得最小值,且ymin=-eq \f(1,e).]
4.函数f(x)=x-aln x(a>0)的极小值为 .
a-aln a [因为f(x)=x-aln x(a>0),所以f(x)的定义域为(0,+∞),f′(x)=1-eq \f(a,x)(a>0),
由f′(x)=0,解得x=a.
当x∈(0,a)时,f′(x)<0;
当x∈(a,+∞)时,f′(x)>0,
所以函数f(x)在x=a处取得极小值,且极小值为f(a)=a-aln a.]
考点1 利用导数解决函数的极值问题
利用导数研究函数极值问题的一般流程
根据函数图象判断函数极值的情况
设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数f(x)有极大值f(2)和极小值f(1)
B.函数f(x)有极大值f(-2)和极小值f(1)
C.函数f(x)有极大值f(2)和极小值f(-2)
D.函数f(x)有极大值f(-2)和极小值f(2)
D [由题图可知,当x<-2时,f′(x)>0;当-2<x<1时,f′(x)<0;当1<x<2时,f′(x)<0;当x>2时,f′(x)>0.由此可以得到函数f(x)在x=-2处取得极大值,在x=2处取得极小值.]
可导函数在极值点处的导数一定为零,是否为极值点以及是极大值点还是极小值点要看在极值点左、右两侧导数的符号.
求已知函数的极值
已知函数f(x)=(x-2)(ex-ax),当a>0时,讨论f(x)的极值情况.
[解] ∵f′(x)=(ex-ax)+(x-2)(ex-a)
=(x-1)(ex-2a),
∵a>0,
由f′(x)=0得x=1或x=ln 2a.
①当a=eq \f(e,2)时,f′(x)=(x-1)(ex-e)≥0,
∴f(x)在R上单调递增,故f(x)无极值.
②当0<a<eq \f(e,2)时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表:
故f(x)有极大值f(ln 2a)=-a(ln 2a-2)2,极小值f(1)=a-e.
③当a>eq \f(e,2)时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表:
故f(x)有极大值f(1)=a-e,
极小值f(ln 2a)=-a(ln 2a-2)2.
综上,当0<a<eq \f(e,2)时,f(x)有极大值-a(ln 2a-2)2,极小值a-e;
当a=eq \f(e,2)时,f(x)无极值;
当a>eq \f(e,2)时,f(x)有极大值a-e,极小值-a(ln 2a-2)2.
求函数极值的一般步骤:①先求函数f(x)的定义域,再求函数f(x)的导函数;②求f′(x)=0的根;③判断在f′(x)=0的根的左、右两侧f′(x)的符号,确定极值点;④求出具体极值.
已知函数极值求参数的值或范围
(1)已知f(x)=x3+3ax2+bx+a2在x=-1时有极值0,则a-b= .
(2)若函数f(x)=eq \f(x3,3)-eq \f(a,2)x2+x+1在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),3))上有极值点,则实数a的取值范围是 .
(1)-7 (2)eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(10,3))) [(1)由题意得f′(x)=3x2+6ax+b,则eq \b\lc\{\rc\ (\a\vs4\al\c1(a2+3a-b-1=0,,b-6a+3=0,))
解得eq \b\lc\{\rc\ (\a\vs4\al\c1(a=1,,b=3))或eq \b\lc\{\rc\ (\a\vs4\al\c1(a=2,,b=9,))
经检验当a=1,b=3时,函数f(x)在x=-1处无法取得极值,
而a=2,b=9满足题意,
故a-b=-7.
(2)函数f(x)在区间eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),3))上有极值点等价于f′(x)=0有2个不相等的实根且在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),3))内有根,由f′(x)=0有2个不相等的实根,得a<-2或a>2.
由f′(x)=0在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),3))内有根,得a=x+eq \f(1,x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),3))内有解,又x+eq \f(1,x)∈2,eq \f(10,3),所以2≤a<eq \f(10,3),
综上,a的取值范围是eq \b\lc\(\rc\)(\a\vs4\al\c1(2,\f(10,3))).]
已知函数极值点或极值求参数的两个要领
(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解.
(2)验证:因为某点处的导数值等于0不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.
[教师备选例题]
若函数f(x)=ex-aln x+2ax-1在(0,+∞)上恰有两个极值点,则a的取值范围为( )
A.(-e2,-e) B.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(e,2)))
C.eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,-\f(1,2))) D.(-∞,-e)
D [∵f′(x)=ex-eq \f(a,x)+2a,(x>0)
∴由f′(x)=0得a=eq \f(xex,1-2x).
令g(x)=eq \f(xex,1-2x)(x>0).
由题意可知g(x)=a在(0,+∞)上恰有两个零点.
又g′(x)=-eq \f(ex2x+1x-1,1-2x2)(x>0),
由g′(x)>0得0<x<1,且x≠eq \f(1,2).
由g′(x)<0得x>1.
∴函数g(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,2))),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,2),1))上递增,在(1,+∞)上递减.
又g(0)=0,g(1)=-e,
结合图形(图略)可知a∈(-∞,-e),故选D.]
1.若x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,则f(x)的极小值为( )
A.-1 B.-2e-3
C.5e-3 D.1
A [因为f(x)=(x2+ax-1)ex-1,所以f′(x)=(2x+a)ex-1+(x2+ax-1)ex-1=[x2+(a+2)x+a-1]ex-1.因为x=-2是函数f(x)=(x2+ax-1)ex-1的极值点,所以-2是x2+(a+2)x+a-1=0的根,所以a=-1,f′(x)=(x2+x-2)ex-1=(x+2)(x-1)ex-1.令f′(x)>0,解得x<-2或x>1,令f′(x)<0,解得-2<x<1,所以f(x)在(-∞,-2)上单调递增,在(-2,1)上单调递减,在(1,+∞)上单调递增,所以当x=1时,f(x)取得极小值,且f(x)极小值=f(1)=-1.]
2.已知函数f(x)=x(x-c)2在x=2处有极小值,则实数c的值为( )
A.6 B.2
C.2或6 D.0
B [由f′(2)=0可得c=2或6.当c=2时,结合图象(图略)可知函数先增后减再增,在x=2处取得极小值;当c=6时,结合图象(图略)可知,函数在x=2处取得极大值.故选B.]
3.(2019·长春市质量监测)若函数f(x)=(x2+ax+3)ex在(0,+∞)内有且仅有一个极值点,则实数a的取值范围是( )
A.(-∞,-2eq \r(2)] B.(-∞,-2eq \r(2))
C.(-∞,-3] D.(-∞,-3)
C [f′(x)=(2x+a)ex+(x2+ax+3)ex=[x2+(a+2)x+a+3]ex,令g(x)=x2+(a+2)x+a+3.由题意知,g(x)在(0,+∞)内先减后增或先增后减,结合函数g(x)的图象特征知,eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(a+2,2)>0,,a+3≤0,))或eq \b\lc\{\rc\ (\a\vs4\al\c1(-\f(a+2,2)≤0,,a+3<0,))解得a≤-3.故选C.]
考点2 用导数求函数的最值
求函数f(x)在[a,b]上的最大值、最小值的步骤
(1)求函数在(a,b)内的极值.
(2)求函数在区间端点的函数值f(a),f(b).
(3)将函数f(x)的极值与f(a),f(b)比较,其中最大的为最大值,最小的为最小值.
(2019·全国卷Ⅲ)已知函数f(x)=2x3-ax2+b.
(1)讨论f(x)的单调性;
(2)是否存在a,b,使得f(x)在区间[0,1]的最小值为-1且最大值为1?若存在,求出a,b的所有值;若不存在,说明理由.
[解] (1)f′(x)=6x2-2ax=2x(3x-a).
令f′(x)=0,得x=0或x=eq \f(a,3).
若a>0,则当x∈(-∞,0)∪eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,3),+∞))时,f′(x)>0;当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(a,3)))时,f′(x)<0.故f(x)在(-∞,0),eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,3),+∞))单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(a,3)))单调递减.
若a=0,f(x)在(-∞,+∞)单调递增.
若a<0,则当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(a,3)))∪(0,+∞)时,f′(x)>0;当x∈eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,3),0))时,f′(x)<0.故f(x)在eq \b\lc\(\rc\)(\a\vs4\al\c1(-∞,\f(a,3))),(0,+∞)单调递增,在eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,3),0))单调递减.
(2)满足题设条件的a,b存在.
(ⅰ)当a≤0时,由(1)知,f(x)在[0,1]单调递增,所以f(x)在区间[0,1]的最小值为f(0)=b,最大值为f(1)=2-a+b.此时a,b满足题设条件当且仅当b=-1,2-a+b=1,即a=0,b=-1.
(ⅱ)当a≥3时,由(1)知,f(x)在[0,1]单调递减,所以f(x)在区间[0,1]的最大值为f(0)=b,最小值为f(1)=2-a+b.此时a,b满足题设条件当且仅当2-a+b=-1,b=1,即a=4,b=1.
(ⅲ)当0<a<3时,由(1)知,f(x)在[0,1]的最小值为feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(a,3)))=-eq \f(a3,27)+b,最大值为b或2-a+b.
若-eq \f(a3,27)+b=-1,b=1,则a=3eq \r(3,2),与0<a<3矛盾.
若-eq \f(a3,27)+b=-1,2-a+b=1,则a=3eq \r(3)或a=-3eq \r(3)或a=0,与0<a<3矛盾.
综上,当且仅当a=0,b=-1或a=4,b=1时,f(x)在[0,1]的最小值为-1,最大值为1.
(1)讨论函数的单调性时,一要注意函数的定义域;二要注意分类的标准,做到不重不漏.
(2)对于探索性问题,求出参数值后要注意检验.
[教师备选例题]
已知函数f(x)=ln x-ax(a∈R).
(1)求函数f(x)的单调区间;
(2)当a>0时,求函数f(x)在[1,2]上的最小值.
[解] (1)f′(x)=eq \f(1,x)-a(x>0),
①当a≤0时,f′(x)=eq \f(1,x)-a>0,即函数f(x)的单调递增区间为(0,+∞).
②当a>0时,令f′(x)=eq \f(1,x)-a=0,可得x=eq \f(1,a),
当0<x<eq \f(1,a)时,f′(x)=eq \f(1-ax,x)>0;
当x>eq \f(1,a)时,f′(x)=eq \f(1-ax,x)<0,
故函数f(x)的单调递增区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a))),
单调递减区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞)).
综上可知,当a≤0时,函数f(x)的单调递增区间为(0,+∞);
当a>0时,函数f(x)的单调递增区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(0,\f(1,a))),
单调递减区间为eq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,a),+∞)).
(2)①当0<eq \f(1,a)≤1,即a≥1时,函数f(x)在区间[1,2]上是减函数,所以f(x)的最小值是f(2)=ln 2-2a.
②当eq \f(1,a)≥2,即0<a≤eq \f(1,2)时,函数f(x)在区间[1,2]上是增函数,所以f(x)的最小值是f(1)=-a.
③当1<eq \f(1,a)<2,即eq \f(1,2)<a<1时,函数f(x)在eq \b\lc\[\rc\](\a\vs4\al\c1(1,\f(1,a)))上是增函数,在eq \b\lc\[\rc\](\a\vs4\al\c1(\f(1,a),2))上是减函数.
又f(2)-f(1)=ln 2-a,
所以当eq \f(1,2)<a<ln 2时,最小值是f(1)=-a;
当ln 2≤a<1时,最小值为f(2)=ln 2-2a.
综上可知,
当0<a<ln 2时,函数f(x)的最小值是f(1)=-a;
当a≥ln 2时,函数f(x)的最小值是f(2)=ln 2-2a.
(2019·郑州模拟)已知函数f(x)=eq \f(1-x,x)+kln x,k<eq \f(1,e),求函数f(x)在上的最大值和最小值.
[解] f′(x)=eq \f(-x-1-x,x2)+eq \f(k,x)=eq \f(kx-1,x2).
①若k=0,则f′(x)=-eq \f(1,x2)在上恒有f′(x)<0,
所以f(x)在上单调递减.
②若k≠0,则f′(x)=eq \f(kx-1,x2)=eq \f(k\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,k))),x2).
(ⅰ)若k<0,则在上恒有eq \f(k\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,k))),x2)<0.
所以f(x)在上单调递减,
(ⅱ)若k>0,由k<eq \f(1,e),
得eq \f(1,k)>e,则x-eq \f(1,k)<0在eq \f(1,e),e上恒成立,
所以eq \f(k\b\lc\(\rc\)(\a\vs4\al\c1(x-\f(1,k))),x2)<0,
所以f(x)在上单调递减.
综上,当k<eq \f(1,e)时,f(x)在上单调递减,
所以f(x)min=f(e)=eq \f(1,e)+k-1,f(x)max=feq \b\lc\(\rc\)(\a\vs4\al\c1(\f(1,e)))=e-k-1.
考点3 利用导数研究生活中的优化问题
利用导数解决生活中的优化问题的一般步骤
(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).
(2)求函数的导数f′(x),解方程f′(x)=0.
(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.
(4)回归实际问题,结合实际问题作答.
某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=eq \f(a,x-3)+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.
(1)求a的值;
(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.
[解] (1)因为当x=5时,y=11,
所以eq \f(a,2)+10=11,解得a=2.
(2)由(1)可知,该商品每日的销售量为
y=eq \f(2,x-3)+10(x-6)2.
所以商场每日销售该商品所获得的利润为
f(x)=(x-3)
=2+10(x-3)(x-6)2,3<x<6.
则f′(x)=10[(x-6)2+2(x-3)(x-6)]
=30(x-4)(x-6).
于是,当x变化时,f′(x),f(x)的变化情况如下表:
由上表可得,当x=4时,函数f(x)取得极大值,也是最大值.
所以,当x=4时,函数f(x)取得最大值且最大值等于42.
即当销售价格为4元/千克时,商场每日销售该商品所获得的利润最大.
(1)利用导数研究生活中的优化问题的关键:理清数量关系、选取合适的自变量建立函数模型.
(2)注意:函数的定义域由实际问题确定,最后要把求解的数量结果“翻译”为实际问题的答案.
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为r米,高为h米,体积为V立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为12 000π元(π为圆周率).
(1)将V表示成r的函数V(r),并求该函数的定义域.
(2)讨论函数V(r)的单调性,并确定r和h为何值时该蓄水池的体积最大.
[解] (1)因为蓄水池侧面的总成本为100×2πrh=200πrh元,底面的总成本为160πr2元,所以蓄水池的总成本为(200πrh+160πr2)元.又根据题意得200πrh+160πr2=12 000π,所以h=eq \f(1,5r)(300-4r2),从而V(r)=πr2h=eq \f(π,5)(300r-4r3).由h>0,且r>0可得0<r<5eq \r(3),故函数V(r)的定义域为(0,5eq \r(3)).
(2)因为V(r)=eq \f(π,5)(300r-4r3),所以V′(r)=eq \f(π,5)(300-12r2).令V′(r)=0,解得r1=5,r2=-5(因为r2=-5不在定义域内,舍去).
当r∈(0,5)时,V′(r)>0,
故V(r)在(0,5)上为增函数;
当r∈(5,5eq \r(3))时,V′(r)<0,故V(r)在(5,5eq \r(3))上为减函数.
由此可知,V(r)在r=5处取得最大值,此时h=8,即当r=5,h=8时,该蓄水池的体积最大.
x
(-∞,ln 2a)
ln 2a
(ln 2a,1)
1
(1,+∞)
f′(x)
+
0
-
0
+
f(x)
↗
极大值
↘
极小值
↗
x
(-∞,1)
1
(1,ln 2a)
ln 2a
(ln 2a,+∞)
f′(x)
+
0
-
0
+
f(x)
↗
极大值
↘
极小值
↗
x
(3,4)
4
(4,6)
f′(x)
+
0
-
f(x)
↗
极大值42
↘
新高考数学一轮复习讲义+分层练习 3.3《利用导数解决函数的极值、最值》教案 (2份打包,原卷版+教师版): 这是一份新高考数学一轮复习讲义+分层练习 3.3《利用导数解决函数的极值、最值》教案 (2份打包,原卷版+教师版),文件包含新高考数学一轮复习讲义+分层练习33《利用导数解决函数的极值最值》教案原卷版doc、新高考数学一轮复习讲义+分层练习33《利用导数解决函数的极值最值》教案原卷版pdf、新高考数学一轮复习讲义+分层练习33《利用导数解决函数的极值最值》教案教师版doc、新高考数学一轮复习讲义+分层练习33《利用导数解决函数的极值最值》教案教师版pdf等4份教案配套教学资源,其中教案共55页, 欢迎下载使用。
高考数学一轮复习教案 第2章_第12节_导数与函数的极值、最值(含答案解析): 这是一份高考数学一轮复习教案 第2章_第12节_导数与函数的极值、最值(含答案解析),共11页。
高考数学一轮复习教案3.3《利用导数解决函数的极值、最值》教案及课后作业 (4份打包,原卷版+教师版): 这是一份高考数学一轮复习教案3.3《利用导数解决函数的极值、最值》教案及课后作业 (4份打包,原卷版+教师版),文件包含高考数学一轮复习教案33《利用导数解决函数的极值最值》教案教师版pdf、高考数学一轮复习教案33《利用导数解决函数的极值最值》教案原卷版pdf、高考数学一轮复习教案33《利用导数解决函数的极值最值》课后作业教师版pdf、高考数学一轮复习教案33《利用导数解决函数的极值最值》课后作业原卷版pdf等4份教案配套教学资源,其中教案共32页, 欢迎下载使用。