所属成套资源:初中数学七年级下册讲义(浙教版)
第2章 一元二次方程辅导讲义1:一元二次方程及其解法(一)直接开平方法—知识讲解(基础)
展开
一元二次方程及其解法(一)直接开平方法—知识讲解(基础) 【学习目标】1.理解一元二次方程的概念和一元二次方程根的意义,会把一元二次方程化为一般形式;
2.掌握直接开平方法解方程,会应用此判定方法解决有关问题;
3.理解解法中的降次思想,直接开平方法中的分类讨论与换元思想.
【要点梳理】要点一、一元二次方程的有关概念
1.一元二次方程的概念:
通过化简后,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程.
要点诠释:识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.不满足其中任何一个条件的方程都不是一元二次方程,缺一不可.
2.一元二次方程的一般形式:
一般地,任何一个关于x的一元二次方程,都能化成形如,这种形式叫做一元二次方程的一般形式.其中是二次项,是二次项系数;bx是一次项,b是一次项系数;c是常数项.
要点诠释:
(1)只有当时,方程才是一元二次方程;
(2)在求各项系数时,应把一元二次方程化成一般形式,指明一元二次方程各项系数时注意不要漏掉前面的性质符号.
3.一元二次方程的解:
使一元二次方程左右两边相等的未知数的值叫做一元二次方程的解,也叫做一元二次方程的根.
4.一元二次方程根的重要结论(1)若a+b+c=0,则一元二次方程必有一根x=1;反之也成立,即若x=1是一元二次方程的一个根,则a+b+c=0.(2)若a-b+c=0,则一元二次方程必有一根x=-1;反之也成立,即若x=-1是一元二次方程的一个根,则a-b+c=0.(3)若一元二次方程有一个根x=0,则c=0;反之也成立,若c=0,则一元二次方程必有一根为0.要点二、一元二次方程的解法
1.直接开方法解一元二次方程:
(1)直接开方法解一元二次方程:
利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.
(2)直接开平方法的理论依据:
平方根的定义.
(3)能用直接开平方法解一元二次方程的类型有两类:
①形如关于x的一元二次方程,可直接开平方求解.
若,则;表示为,有两个不等实数根;
若,则x=O;表示为,有两个相等的实数根;
若,则方程无实数根.
②形如关于x的一元二次方程,可直接开平方求解,两根是
.
要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.
【典型例题】类型一、关于一元二次方程的判定1.判定下列方程是不是一元二次方程:
(1); (2).
【思路点拨】识别一元二次方程必须抓住三个条件:(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.【答案】(1)是;(2)不是.【解析】(1)整理原方程,得
,
所以 .
其中,二次项的系数,所以原方程是一元二次方程.
(2)整理原方程,得
,
所以 .
其中,二次项的系数为,所以原方程不是一元二次方程.
【总结升华】不满足(1)整式方程;(2)含有一个未知数;(3)未知数的最高次数是2.的方程都不是一元二次方程,缺一不可.举一反三:【高清ID号:388447关联的位置名称(播放点名称):一元二次方程的概念-例1】【变式】判断下列各式哪些是一元二次方程. ①;②;③ ;④ ;⑤ ;⑥ ;⑦ .【答案】②③⑥.【解析】①不是方程;④ 不是整式方程;⑤ 含有2个未知数,不是一元方程;⑦ 化简后没有二次项,不是2次方程. ②③⑥符合一元二次方程的定义.
类型二、一元二次方程的一般形式、各项系数的确定
2.把下列方程中的各项系数化为整数,二次项系数化为正数,并求出各项的系数:
(1)-3x2-4x+2=0; (2).
【答案与解析】(1)两边都乘-1,就得到方程
3x2+4x-2=0.
各项的系数分别是: a=3,b=4,c=-2.
(2)两边同乘-12,得到整数系数方程
6x2-20x+9=0.
各项的系数分别是:.
【总结升华】一般地,常根据等式的性质把二次项的系数是负数的一元二次方程调整为二次项系数是正数的一元二次方程;把分数系数的一元二次方程调整为整数系数的一元二次方程.值得注意的是,确定各项的系数时,不应忘记系数的符号,如(1)题中c=-2不能写为c=2,(2)题中不能写为.举一反三:【高清ID号:388447关联的位置名称(播放点名称):一元二次方程的形式-例3】【变式】将下列方程化为一元二次方程一般形式,并指出二次项系数、一次项系数和常数项: (1); (2).【答案】(1),二次项系数是3、一次项系数是-5、常数项是2. (2)化为二次项系数是a、一次项系数是1、常数项是-a-2. 类型三、一元二次方程的解(根)3. 如果关于x的一元二次方程x2+px+q=0的两根分别为x1=2,x2=1,那么p,q的值分别是( ) A.-3,2 B.3,-2 C.2,-3 D.2,3【答案】A;【解析】∵ x=2是方程x2+px+q=0的根,∴ 22+2p+q=0,即2p+q=-4 ① 同理,12+p+q=0,即p+q=-1 ② 联立①,②得 解之得:【总结升华】由方程根的定义得到关于系数的方程(组),从而求出系数的方法称为待定系数法,是常用的数学解题方法.即分别用2,1代替方程中未知数x的值,得到两个关于p、q的方程,解方程组可求p、q的值. 类型四、用直接开平方法解一元二次方程
4. (2016春•仙游县月考)求下列x的值(1)x2﹣25=0(2)(x+5)2=16.【思路点拨】(1)移项后利用直接开方法即可解决.(2)利用直接开方法解决.【答案与解析】 解:(1)∵x2﹣25=0,∴x2=25,∴x=±5.(2)∵(x+5)2=16,∴x+5=±4,∴x=﹣1或﹣9.
【总结升华】应当注意,形如=k或(nx+m)2=k(k≥0)的方程是最简单的一元二次方程,“开平方”是解这种方程最直接的方法.“开平方”也是解一般的一元二次方程的基本思路之一.
举一反三:
【变式1】用直接开平方法求下列各方程的根:
(1)x2=361; (2)2y2-72=0; (3)5a2-1=0; (4)-8m2+36=0.
【答案】(1)∵ x2=361,
∴ x=19或x=-19.
(2)∵2y2-72=0,
2y2=72,
y2=36,
∴ y=6或y=-6.
(3)∵5a2-1=0,
5a2=1,
a2=,
∴a=或a=-.
(4)∵-8m2+36=0,
-8m2=-36,
m2=,
∴m=或m=-.【变式2】解下列方程:
(1) (2015 •东西湖区校级模拟)(2x+3)2-25=0; (2)(1﹣2x)2=x2﹣6x+9.
【答案】解:(1)∵ (2x+3)2=25,
∴ 2x+3=5或2x+3=-5.
∴x1=1,x2=-4.
(2) ∵(1﹣2x)2=x2﹣6x+9, ∴(1﹣2x)2=(x﹣3)2, ∴1﹣2x=±(x﹣3), ∴1﹣2x=x﹣3或1﹣2x=﹣(x﹣3), ∴x1=,x2=﹣2.