高中数学高考第9讲 第2课时 定点、定值、范围、最值问题
展开第2课时 定点、定值、范围、最值问题
一、选择题
1.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l与抛物线有公共点,则直线l的斜率的取值范围是( )
A. B.[-2,2]
C.[-1,1] D.[-4,4]
解析 Q(-2,0),设直线l的方程为y=k(x+2),代入抛物线方程,消去y整理得k2x2+(4k2-8)x+4k2=0,由Δ=(4k2-8)2-4k2·4k2=64(1-k2)≥0,解得-1≤k≤1.
答案 C
2.(2017·石家庄模拟)已知P为双曲线C:-=1上的点,点M满足||=1,且·=0,则当||取得最小值时点P到双曲线C的渐近线的距离为( )
A. B. C.4 D.5
解析 由·=0,得OM⊥PM,根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(±3,0),而双曲线的渐近线为4x±3y=0,∴所求的距离d=,故选B.
答案 B
3.已知椭圆C的方程为+=1(m>0),如果直线y=x与椭圆的一个交点M在x轴上的射影恰好是椭圆的右焦点F,则m的值为( )
A.2 B.2 C.8 D.2
解析 根据已知条件得c=,则点(,)在椭圆+=1(m>0)上,
∴+=1,可得m=2.
答案 B
4.若双曲线-=1(a>0,b>0)的渐近线与抛物线y=x2+2有公共点,则此双曲线的离心率的取值范围是( )
A.[3,+∞) B.(3,+∞)
C.(1,3] D.(1,3)
解析 依题意可知双曲线渐近线方程为y=±x,与抛物线方程联立消去y得x2±x+2=0.
∵渐近线与抛物线有交点,
∴Δ=-8≥0,求得b2≥8a2,
∴c=≥3a,∴e=≥3.
答案 A
5.(2016·丽水一模)斜率为1的直线l与椭圆+y2=1相交于A,B两点,则|AB|的最大值为( )
A.2 B. C. D.
解析 设A,B两点的坐标分别为(x1,y1),(x2,y2),
直线l的方程为y=x+t,由消去y,
得5x2+8tx+4(t2-1)=0,
则x1+x2=-t,x1x2=.
∴|AB|=|x1-x2|
=·
=·
=·,
当t=0时,|AB|max=.
答案 C
二、填空题
6.已知双曲线-=1(a>0,b>0)的一条渐近线方程是y=x,它的一个焦点与抛物线y2=16x的焦点相同,则双曲线的方程为________.
解析 由条件知双曲线的焦点为(4,0),
所以解得a=2,b=2,
故双曲线方程为-=1.
答案 -=1
7.已知动点P(x,y)在椭圆+=1上,若A点坐标为(3,0),||=1,且·=0,则||的最小值是________.
解析 ∵·=0,∴⊥.
∴||2=||2-||2=||2-1,
∵椭圆右顶点到右焦点A的距离最小,
故||min=2,∴||min=.
答案
8.(2017·平顶山模拟)若双曲线x2-=1(b>0)的一条渐近线与圆x2+(y-2)2=1至多有一个公共点,则双曲线离心率的取值范围是________.
解析 双曲线的渐近线方程为y=±bx,则有≥1,解得b2≤3,则e2=1+b2≤4,∵e>1,∴1<e≤2.
答案 (1,2]
三、解答题
9.如图,椭圆E:+=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且·=-1.
(1)求椭圆E的方程;
(2)设O为坐标原点,过点P的动直线与椭圆交于A,B两点.是否存在常数λ,使得·+λ·为定值?若存在,求λ的值;若不存在,请说明理由.
解 (1)由已知,点C,D的坐标分别为(0,-b),(0,b).
又点P的坐标为(0,1),且·=-1,
于是解得a=2,b=.
所以椭圆E方程为+=1.
(2)当直线AB的斜率存在时,
设直线AB的方程为y=kx+1,
A,B的坐标分别为(x1,y1),(x2,y2).
联立
得(2k2+1)x2+4kx-2=0.
其判别式Δ=(4k)2+8(2k2+1)>0,
所以,x1+x2=-,x1x2=-.
从而,·+λ·=x1x2+y1y2
+λ[x1x2+(y1-1)(y2-1)]
=(1+λ)(1+k2)x1x2+k(x1+x2)+1
==--λ-2.
所以,当λ=1时,--λ-2=-3.
此时,·+λ·=-3为定值.
当直线AB斜率不存在时,直线AB即为直线CD,
此时·+λ·=·+·=-2-1=-3,
故存在常数λ=1,使得·+λ·为定值-3.
10.(2016·浙江卷)如图,设椭圆+y2=1(a>1).
(1)求直线y=kx+1被椭圆截得的线段长(用a,k表示);
(2)若任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点,求椭圆离心率的取值范围.
解 (1)设直线y=kx+1被椭圆截得的线段为AM,由得(1+a2k2)x2+2a2kx=0.
故x1=0,x2=-,
因此|AM|=|x1-x2|=·.
(2)假设圆与椭圆的公共点有4个,由对称性可设y轴左侧的椭圆上有两个不同的点P,Q,满足|AP|=|AQ|.
记直线AP,AQ的斜率分别为k1,k2,且k1,k2>0,k1≠k2.
由(1)知|AP|=,|AQ|=,
故=,
所以(k-k)[1+k+k+a2(2-a2)kk]=0.
由于k1≠k2,k1,k2>0得1+k+k+a2(2-a2)kk=0,
因此=1+a2(a2-2),①
因为①式关于k1,k2的方程有解的充要条件是1+a2(a2-2)>1,所以a>.
因此,任意以点A(0,1)为圆心的圆与椭圆至多有3个公共点的充要条件为1<a≤,
由e==得,所求离心率的取值范围是.
11.(2016·湖南师大附中月考)设双曲线C:-=1(a>0,b>0)的一条渐近线与抛物线y2=x的一个交点的横坐标为x0,若x0>1,则双曲线C的离心率e的取值范围是( )
A. B.(,+∞)
C.(1,) D.
解析 不妨联立y=x与y2=x的方程,消去y得x2=x,由x0>1知<1,即<1,故e2<2,又e>1,所以1<e<,故选C.
答案 C
12.(2017·河南省八市质检)已知双曲线-=1(a>0,b>0)的离心率为2,它的两条渐近线与抛物线y2=2px(p>0)的准线分别交于A,B两点,O为坐标原点.若△AOB的面积为,则抛物线的准线方程为( )
A.x=-2 B.x=2
C.x=1 D.x=-1
解析 因为e==2,所以c=2a,b=a,双曲线的渐近线方程为y=±x,又抛物线的准线方程为x=-,联立双曲线的渐近线方程和抛物线的准线方程得A,B,在△AOB中,|AB|=p,点O到AB的距离为,所以·p·=,所以p=2,所以抛物线的准线方程为x=-1,故选D.
答案 D
13.(2017·绵阳诊断)若点O和点F分别为椭圆+=1的中点和左焦点,点P为椭圆上的任一点,则·的最小值为________.
解析 点P为椭圆+=1上的任意一点,设P(x,y)(-3≤x≤3,-2≤y≤2),依题意得左焦点F(-1,0),∴=(x,y),=(x+1,y),∴·=x(x+1)+y2=x2+x+=+.
∵-3≤x≤3,
∴≤x+≤,∴≤≤,
∴≤≤,∴6≤+≤12,即6≤·≤12,故最小值为6.
答案 6
14.(2017·衡水中学高三联考)已知椭圆C:+=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,直线3x+4y+6=0与圆x2+(y-b)2=a2相切.
(1)求椭圆C的方程;
(2)已知过椭圆C的左顶点A的两条直线l1,l2分别交椭圆C于M,N两点,且l1⊥l2,求证:直线MN过定点,并求出定点坐标;
(3)在(2)的条件下求△AMN面积的最大值.
解 (1)由题意,得∴
即C:+y2=1.
(2)由题意得直线l1,l2的斜率存在且不为0.
∵A(-2,0),设l1:x=my-2,l2:x=-y-2,
由得(m2+4)y2-4my=0,
∴M.同理,N.
①m≠±1时,kMN=,
lMN:y=.此时过定点.
②m=±1时,lMN:x=-,过点.
∴lMN恒过定点.
(3)由(2)知S△AMN=×|yM-yN|
==8
==.
令t=≥2,当且仅当m=±1时取等号,
∴S△AMN≤,且当m=±1时取等号.
∴(S△AMN)max=.
题型05 平面解析几何题型(定值定点问题、存在性问题、最值取值范围问题)-高考数学必考重点题型技法突破: 这是一份题型05 平面解析几何题型(定值定点问题、存在性问题、最值取值范围问题)-高考数学必考重点题型技法突破,文件包含题型05平面解析几何题型定值定点问题存在性问题最值取值范围问题解析版docx、题型05平面解析几何题型定值定点问题存在性问题最值取值范围问题原卷版docx等2份试卷配套教学资源,其中试卷共57页, 欢迎下载使用。
高中数学高考第九章 9 9范围、最值、定点、定值问题-学生版(1): 这是一份高中数学高考第九章 9 9范围、最值、定点、定值问题-学生版(1),共16页。试卷主要包含了若OA⊥OB等内容,欢迎下载使用。
高中数学高考第13讲 解析几何中的定点定值最值问题(解析版): 这是一份高中数学高考第13讲 解析几何中的定点定值最值问题(解析版),共19页。试卷主要包含了即面积的最小值为2,已知椭圆经过点,且一个焦点为,已知椭圆的离心率为,且过点,,已知椭圆经过点,且离心率为,已知椭圆的左焦点为,为坐标原点等内容,欢迎下载使用。