搜索
    上传资料 赚现金
    英语朗读宝

    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版) 试卷

    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版)第1页
    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版)第2页
    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版)第3页
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版)

    展开

    这是一份高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(教师版),共16页。试卷主要包含了均值,方差,两个特殊分布的期望与方差,正态分布等内容,欢迎下载使用。
    思维导图
    知识梳理
    1.均值
    一般地,若离散型随机变量X的分布列为:
    则称E(X)=x1p1+x2p2+…+xipi+…+xnpn为随机变量X的均值或数学期望.它反映了离散型随机变量取值的平均水平.
    2.方差
    设离散型随机变量X的分布列为:
    则(xi-E(X))2描述了xi(i=1,2,…,n)相对于均值E(X)的偏离程度.而D(X)=eq \i\su(i=1,n, )(xi-E(X))2pi为这些偏离程度的加权平均,刻画了随机变量X与其均值E(X)的平均偏离程度.称D(X)为随机变量X的方差,并称其算术平方根eq \r(DX)为随机变量X的标准差.
    3.两个特殊分布的期望与方差
    4.正态分布
    (1)正态曲线的特点
    ①曲线位于x轴上方,与x轴不相交;
    ②曲线是单峰的,它关于直线x=μ对称;
    ③曲线在x=μ处达到峰值eq \f(1,σ\r(2π));
    ④曲线与x轴之间的面积为1;
    ⑤当σ一定时,曲线的位置由μ确定,曲线随着μ的变化而沿x轴平移;
    ⑥当μ一定时,曲线的形状由σ确定,σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.
    (2)正态分布的三个常用数据
    ①P(μ-σ<X≤μ+σ)≈0.682 6;
    ②P(μ-2σ<X≤μ+2σ)≈0.954 4;
    ③P(μ-3σ<X≤μ+3σ)≈0.997 4.
    题型归纳
    题型1 离散型随机变量的均值与方差
    【例1-1】为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1小时离开的概率分别为eq \f(1,4),eq \f(1,6);1小时以上且不超过2小时离开的概率分别为eq \f(1,2),eq \f(2,3);两人滑雪时间都不会超过3小时.
    (1)求甲、乙两人所付滑雪费用相同的概率;
    (2)设甲、乙两人所付的滑雪费用之和为随机变量ξ(单位:元),求ξ的分布列与数学期望E(ξ),方差D(ξ).
    【解】 (1)两人所付费用相同,相同的费用可能为0,40,80元,
    两人都付0元的概率为P1=eq \f(1,4)×eq \f(1,6)=eq \f(1,24),
    两人都付40元的概率为P2=eq \f(1,2)×eq \f(2,3)=eq \f(1,3),
    两人都付80元的概率为
    P3=eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,4)-\f(1,2)))×eq \b\lc\(\rc\)(\a\vs4\al\c1(1-\f(1,6)-\f(2,3)))=eq \f(1,4)×eq \f(1,6)=eq \f(1,24),
    故两人所付费用相同的概率为P=P1+P2+P3=eq \f(1,24)+eq \f(1,3)+eq \f(1,24)=eq \f(5,12).
    (2)由题设甲、乙所付费用之和为ξ,ξ可能取值为0,40,80,120,160,则:
    P(ξ=0)=eq \f(1,4)×eq \f(1,6)=eq \f(1,24),
    P(ξ=40)=eq \f(1,4)×eq \f(2,3)+eq \f(1,2)×eq \f(1,6)=eq \f(1,4),
    P(ξ=80)=eq \f(1,4)×eq \f(1,6)+eq \f(1,2)×eq \f(2,3)+eq \f(1,6)×eq \f(1,4)=eq \f(5,12),
    P(ξ=120)=eq \f(1,2)×eq \f(1,6)+eq \f(1,4)×eq \f(2,3)=eq \f(1,4),
    P(ξ=160)=eq \f(1,4)×eq \f(1,6)=eq \f(1,24).
    ξ的分布列为
    E(ξ)=0×eq \f(1,24)+40×eq \f(1,4)+80×eq \f(5,12)+120×eq \f(1,4)+160×eq \f(1,24)=80.
    D(ξ)=(0-80)2×eq \f(1,24)+(40-80)2×eq \f(1,4)+(80-80)2×eq \f(5,12)+(120-80)2×eq \f(1,4)+(160-80)2×eq \f(1,24)=eq \f(4 000,3).
    【跟踪训练1-1】(2019·浙江高考)设0

    相关试卷

    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(达标检测)(学生版):

    这是一份高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(达标检测)(学生版),共11页。

    高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(学生版):

    这是一份高中数学高考第61讲 离散型随机变量的均值与方差、正态分布(讲)(学生版),共13页。试卷主要包含了均值,方差,两个特殊分布的期望与方差,正态分布等内容,欢迎下载使用。

    高中数学高考第7讲 离散型随机变量的均值与方差、正态分布:

    这是一份高中数学高考第7讲 离散型随机变量的均值与方差、正态分布,共17页。试卷主要包含了知识梳理,教材衍化等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map