高中数学高考第63讲 变量间的相关关系、统计案例(讲)(学生版)
展开
这是一份高中数学高考第63讲 变量间的相关关系、统计案例(讲)(学生版),共12页。试卷主要包含了变量间的相关关系,两个变量的线性相关,独立性检验等内容,欢迎下载使用。
思维导图
知识梳理
1.变量间的相关关系
(1)常见的两变量之间的关系有两类:一类是函数关系,另一类是相关关系;与函数关系不同,相关关系是一种非确定性关系.
(2)从散点图上看,点散布在从左下角到右上角的区域内,两个变量的这种相关关系称为正相关;点散布在左上角到右下角的区域内,两个变量的这种相关关系为负相关.
2.两个变量的线性相关
(1)从散点图上看,如果这些点从整体上看大致分布在通过散点图中心的一条直线附近,称两个变量之间具有线性相关关系,这条直线叫做回归直线.
(2)回归方程为eq \(y,\s\up6(^))=eq \(b,\s\up6(^))x+eq \(a,\s\up6(^)),其中
eq \(b,\s\up6(^))=eq \f(\i\su(i=1,n, )xi-\x\t(x)yi-\x\t(y),\i\su(i=1,n, )xi-\x\t(x)2)=eq \f(\i\su(i=1,n,x)iyi-n\x\t(x) \x\t(y),\i\su(i=1,n,x)\\al(2,i)-n\x\t(x)2), eq \(a,\s\up6(^))=eq \x\t(y)-eq \(b,\s\up6(^))eq \x\t(x).
(3)通过求eq \a\vs4\al(Q=\i\su(i=1,n, )yi-bxi-a2)的最小值而得到回归直线的方法,即使得样本数据的点到回归直线的距离的平方和最小,这一方法叫做最小二乘法.
(4)相关系数:
当r>0时,表明两个变量正相关;
当r<0时,表明两个变量负相关.
r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常|r|大于0.75时,认为两个变量有很强的线性相关性.
3.独立性检验
(1)2×2列联表
设X,Y为两个变量,它们的取值分别为{x1,x2}和{y1,y2},其样本频数列联表(2×2列联表)如下:
(2)独立性检验
利用随机变量K2(也可表示为χ2)的观测值k=eq \f(nad-bc2,a+bc+da+cb+d)(其中n=a+b+c+d为样本容量)来判断“两个变量有关系”的方法称为独立性检验.
题型归纳
题型1 相关关系的判断
【例1-1】对变量x,y有观测数据(xi,yi)(i=1,2,…,10),得散点图如图①,对变量u,v有观测数据(ui,vi)(i=1,2,…,10),得散点图如图②.由这两个散点图可以判断( )
A.变量x与y正相关,u与v正相关
B.变量x与y正相关,u与v负相关
C.变量x与y负相关,u与v正相关
D.变量x与y负相关,u与v负相关
【例1-2】(2019·郑州市第一次质量预测)某商家今年上半年各月的人均销售额(单位:千元)与利润率统计表如下:
根据表中数据,下列说法正确的是( )
A.利润率与人均销售额成正相关关系
B.利润率与人均销售额成负相关关系
C.利润率与人均销售额成正比例函数关系
D.利润率与人均销售额成反比例函数关系
【跟踪训练1-1】已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是( )
A.x与y正相关,x与z负相关
B.x与y正相关,x与z正相关
C.x与y负相关,x与z负相关
D.x与y负相关,x与z正相关
【跟踪训练1-2】在一组样本数据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若所有样本点(xi,yi)(i=1,2,…,n)都在直线y=eq \f(1,2)x+1上,则这组样本数据的样本相关系数为( )
A.-1 B.0
C.eq \f(1,2) D.1
【跟踪训练1-3】变量X与Y相应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).r1表示变量Y与X之间的线性相关系数,r2表示变量V与U之间的线性相关系数,则( )
A.r2
相关试卷
这是一份2024年新高考数学一轮复习知识梳理与题型归纳第63讲变量间的相关关系统计案例(学生版),共9页。试卷主要包含了变量间的相关关系,两个变量的线性相关,独立性检验等内容,欢迎下载使用。
这是一份高中数学高考第63讲 变量间的相关关系、统计案例(达标检测)(学生版),共13页。
这是一份高中数学高考第63讲 变量间的相关关系、统计案例(讲)(教师版),共15页。试卷主要包含了变量间的相关关系,两个变量的线性相关,独立性检验等内容,欢迎下载使用。