搜索
    上传资料 赚现金
    英语朗读宝

    高中数学高考第八章 8 5直线、平面垂直-学生版(1) 试卷

    高中数学高考第八章 8 5直线、平面垂直-学生版(1)第1页
    高中数学高考第八章 8 5直线、平面垂直-学生版(1)第2页
    高中数学高考第八章 8 5直线、平面垂直-学生版(1)第3页
    还剩12页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考第八章 8 5直线、平面垂直-学生版(1)

    展开

    这是一份高中数学高考第八章 8 5直线、平面垂直-学生版(1),共15页。试卷主要包含了判断下列结论是否正确,下列命题中不正确的是等内容,欢迎下载使用。
    进门测
    1、判断下列结论是否正确(请在括号中打“√”或“×”)
    (1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )
    (2)垂直于同一个平面的两平面平行.( )
    (3)直线a⊥α,直线b⊥α,则a∥b.( )
    (4)若α⊥β,a⊥β⇒a∥α.( )
    (5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( )
    2、下列命题中不正确的是( )
    A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β
    B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
    C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
    D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
    3、设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
    A.充分不必要条件 B.必要不充分条件
    C.充分必要条件 D.既不充分也不必要条件
    4、对于四面体ABCD,给出下列四个命题:
    ①若AB=AC,BD=CD,则BC⊥AD;
    ②若AB=CD,AC=BD,则BC⊥AD;
    ③若AB⊥AC,BD⊥CD,则BC⊥AD;
    ④若AB⊥CD,AC⊥BD,则BC⊥AD.
    其中为真命题的是( )
    A.①② B.②③ C.②④ D.①④
    5、在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
    (1)若PA=PB=PC,则点O是△ABC的________心.
    (2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
    作业检查

    第2课时
    阶段训练
    题型一 直线与平面垂直的判定与性质
    例1 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=eq \f(5,4),EF交BD于点H.将△DEF沿EF折到△D′EF的位置.OD′=eq \r(10).
    证明:D′H⊥平面ABCD.
    【同步练习】
    1、在三棱锥A-BCD中,AB⊥平面BCD,DB=DC=4,∠BDC=90°,P在线段BC上,CP=3PB,M,N分别为AD,BD的中点.求证:BC⊥平面MNP.
    题型二 平面与平面垂直的判定与性质
    例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
    (1)求证:CE∥平面PAD;
    (2)求证:平面EFG⊥平面EMN.
    引申探究
    1.在本例条件下,证明:平面EMN⊥平面PAC.
    2.在本例条件下,证明:平面EFG∥平面PAC.
    【同步练习】
    1、如图,在直三棱柱ABC—A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
    求证:(1)直线DE∥平面A1C1F;
    (2)平面B1DE⊥平面A1C1F.
    第3课时
    阶段重难点梳理
    1.直线与平面垂直
    (1)定义
    如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.
    (2)判定定理与性质定理
    2.直线和平面所成的角
    (1)定义
    平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.
    (2)范围:[0,eq \f(π,2)].
    3.平面与平面垂直
    (1)二面角的有关概念
    ①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
    ②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
    (2)平面和平面垂直的定义
    两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
    (3)平面与平面垂直的判定定理与性质定理
    【知识拓展】
    重要结论:
    (1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
    (2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线.
    (3)垂直于同一条直线的两个平面平行.
    (4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.
    重点题型训练
    题型三 求空间角
    命题点1 求两条异面直线所成的角和二面角
    例3 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AD,AA1的中点.
    (1)求直线EF和直线AB1所成的角的大小;
    (2)求二面角D—A1C1—D1的正切值.
    命题点2 求直线和平面所成的角
    例4 如图,在三棱锥D—ABC中,DA=DB=DC,点D在底面ABC上的射影为点E,AB⊥BC,DF⊥AB于点F.
    (1)求证:平面ABD⊥平面DEF;
    (2)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.
    【同步练习】
    1、在如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,BC=eq \r(5),F是CD的中点.
    (1)求证:AF∥平面BCE;
    (2)求直线CE与平面ABED所成角的余弦值.
    2、 如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
    求证:(1)AN∥平面A1MK;
    (2)平面A1B1C⊥平面A1MK.
    思导总结
    一、证明线面垂直的常用方法及关键
    (1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.
    (2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
    二、面面垂直
    (1)判定面面垂直的方法
    ①面面垂直的定义;
    ②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).
    (2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
    三、垂直的核心
    (1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;
    (2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;
    (3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.
    作业布置
    1.设α,β是两个不同的平面,m是直线,且m⊂α,则“m⊥β”是“α⊥β”的( )
    A.充分不必要条件 B.必要不充分条件
    C.充要条件 D.既不充分也不必要条件
    2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
    A.若α⊥β,m⊂α,n⊂β,则m⊥n
    B.若α∥β,m⊂α,n⊂β,,则m∥n
    C.若m⊥n,m⊂α,n⊂β,则α⊥β
    D.若m⊥α,m∥n,n∥β,则α⊥β
    3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
    A.直线AB上
    B.直线BC上
    C.直线AC上
    D.△ABC内部
    4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )
    A.CC1与B1E是异面直线
    B.AC⊥平面ABB1A1
    C.AE与B1C1是异面直线,且AE⊥B1C1
    D.A1C1∥平面AB1E
    5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
    ①BD⊥AC;②△BAC是等边三角形;
    ③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.
    其中正确的是( )
    A.①②④ B.①②③
    C.②③④ D.①③④
    6.已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
    A.eq \f(2\r(2),3) B.eq \f(\r(7),3)
    C.eq \f(\r(6),3) D.eq \f(\r(5),3)
    7. 如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.
    如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,
    F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
    9. 如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
    ①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.
    其中正确结论的序号是________.
    10.在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC⊂α,一直角边AC⊂β,BC与β所成角的正弦值为eq \f(\r(6),4),则AB与β所成的角是________.
    11.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq \f(1,2)AD.
    (1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
    (2)证明:平面PAB⊥平面PBD.
    12.在三棱柱ABC-A1B1C1中,AC⊥BC,AC1⊥平面ABC,BC=CA=AC1.
    (1)求证:AC⊥平面AB1C1;
    (2)求直线A1B与平面AB1C1所成角的余弦值.
    13.如图,在四棱锥P—ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
    (1)求证:DC⊥平面PAC;
    (2)求证:平面PAB⊥平面PAC;
    (3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
    文字语言
    图形语言
    符号语言
    判定定理
    一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
    eq \b\lc\ \rc\}(\a\vs4\al\c1(a,b⊂α,a∩b=O,l⊥a,l⊥b))⇒l⊥α
    性质定理
    垂直于同一个平面的两条直线平行
    eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊥α,b⊥α))⇒a∥b
    文字语言
    图形语言
    符号语言
    判定定理
    一个平面过另一个平面的垂线,则这两个平面垂直
    eq \b\lc\ \rc\}(\a\vs4\al\c1(l⊥α,l⊂β))⇒α⊥β
    性质定理
    两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
    eq \b\lc\ \rc\}(\a\vs4\al\c1(α⊥β,l⊂β,α∩β=a,l⊥a))⇒l⊥α

    相关试卷

    高中数学高考第八章 8 5直线、平面垂直-教师版(1):

    这是一份高中数学高考第八章 8 5直线、平面垂直-教师版(1),共27页。试卷主要包含了判断下列结论是否正确,下列命题中不正确的是等内容,欢迎下载使用。

    高中数学高考第八章 8 3点、直线、平面的关系-学生版:

    这是一份高中数学高考第八章 8 3点、直线、平面的关系-学生版,共12页。试卷主要包含了四个公理,直线与直线的位置关系,等角定理,构造模型判断空间线面位置关系,下列命题中,正确的是等内容,欢迎下载使用。

    高中数学高考第八章 8 4直线、平面平行-教师版(1):

    这是一份高中数学高考第八章 8 4直线、平面平行-教师版(1),共22页。试卷主要包含了下列命题中正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map