高中数学高考第八章 8 5直线、平面垂直-学生版(1)
展开
这是一份高中数学高考第八章 8 5直线、平面垂直-学生版(1),共15页。试卷主要包含了判断下列结论是否正确,下列命题中不正确的是等内容,欢迎下载使用。
进门测
1、判断下列结论是否正确(请在括号中打“√”或“×”)
(1)直线l与平面α内的无数条直线都垂直,则l⊥α.( )
(2)垂直于同一个平面的两平面平行.( )
(3)直线a⊥α,直线b⊥α,则a∥b.( )
(4)若α⊥β,a⊥β⇒a∥α.( )
(5)若直线a⊥平面α,直线b∥α,则直线a与b垂直.( )
2、下列命题中不正确的是( )
A.如果平面α⊥平面β,且直线l∥平面α,则直线l⊥平面β
B.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面β
C.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β
D.如果平面α⊥平面γ,平面β⊥平面γ,α∩β=l,那么l⊥γ
3、设平面α与平面β相交于直线m,直线a在平面α内,直线b在平面β内,且b⊥m,则“α⊥β”是“a⊥b”的( )
A.充分不必要条件 B.必要不充分条件
C.充分必要条件 D.既不充分也不必要条件
4、对于四面体ABCD,给出下列四个命题:
①若AB=AC,BD=CD,则BC⊥AD;
②若AB=CD,AC=BD,则BC⊥AD;
③若AB⊥AC,BD⊥CD,则BC⊥AD;
④若AB⊥CD,AC⊥BD,则BC⊥AD.
其中为真命题的是( )
A.①② B.②③ C.②④ D.①④
5、在三棱锥P-ABC中,点P在平面ABC中的射影为点O.
(1)若PA=PB=PC,则点O是△ABC的________心.
(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.
作业检查
无
第2课时
阶段训练
题型一 直线与平面垂直的判定与性质
例1 如图,菱形ABCD的对角线AC与BD交于点O,AB=5,AC=6,点E,F分别在AD,CD上,AE=CF=eq \f(5,4),EF交BD于点H.将△DEF沿EF折到△D′EF的位置.OD′=eq \r(10).
证明:D′H⊥平面ABCD.
【同步练习】
1、在三棱锥A-BCD中,AB⊥平面BCD,DB=DC=4,∠BDC=90°,P在线段BC上,CP=3PB,M,N分别为AD,BD的中点.求证:BC⊥平面MNP.
题型二 平面与平面垂直的判定与性质
例2 如图,四棱锥P-ABCD中,AB⊥AC,AB⊥PA,AB∥CD,AB=2CD,E,F,G,M,N分别为PB,AB,BC,PD,PC的中点.
(1)求证:CE∥平面PAD;
(2)求证:平面EFG⊥平面EMN.
引申探究
1.在本例条件下,证明:平面EMN⊥平面PAC.
2.在本例条件下,证明:平面EFG∥平面PAC.
【同步练习】
1、如图,在直三棱柱ABC—A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1.
求证:(1)直线DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.
第3课时
阶段重难点梳理
1.直线与平面垂直
(1)定义
如果直线l与平面α内的任意一条直线都垂直,则直线l与平面α垂直.
(2)判定定理与性质定理
2.直线和平面所成的角
(1)定义
平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.若一条直线垂直于平面,它们所成的角是直角,若一条直线和平面平行,或在平面内,它们所成的角是0°的角.
(2)范围:[0,eq \f(π,2)].
3.平面与平面垂直
(1)二面角的有关概念
①二面角:从一条直线出发的两个半平面所组成的图形叫做二面角;
②二面角的平面角:在二面角的棱上任取一点,以该点为垂足,在两个半平面内分别作垂直于棱的两条射线,这两条射线所构成的角叫做二面角的平面角.
(2)平面和平面垂直的定义
两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.
(3)平面与平面垂直的判定定理与性质定理
【知识拓展】
重要结论:
(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.
(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线.
(3)垂直于同一条直线的两个平面平行.
(4)一条直线垂直于两平行平面中的一个,则这一条直线与另一个平面也垂直.
重点题型训练
题型三 求空间角
命题点1 求两条异面直线所成的角和二面角
例3 如图所示,在正方体ABCD—A1B1C1D1中,E,F分别是AD,AA1的中点.
(1)求直线EF和直线AB1所成的角的大小;
(2)求二面角D—A1C1—D1的正切值.
命题点2 求直线和平面所成的角
例4 如图,在三棱锥D—ABC中,DA=DB=DC,点D在底面ABC上的射影为点E,AB⊥BC,DF⊥AB于点F.
(1)求证:平面ABD⊥平面DEF;
(2)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成的角的正弦值.
【同步练习】
1、在如图所示的多面体ABCDE中,已知AB∥DE,AB⊥AD,△ACD是正三角形,AD=DE=2AB=2,BC=eq \r(5),F是CD的中点.
(1)求证:AF∥平面BCE;
(2)求直线CE与平面ABED所成角的余弦值.
2、 如图所示,M,N,K分别是正方体ABCD—A1B1C1D1的棱AB,CD,C1D1的中点.
求证:(1)AN∥平面A1MK;
(2)平面A1B1C⊥平面A1MK.
思导总结
一、证明线面垂直的常用方法及关键
(1)证明直线和平面垂直的常用方法有:①判定定理;②垂直于平面的传递性(a∥b,a⊥α⇒b⊥α);③面面平行的性质(a⊥α,α∥β⇒a⊥β);④面面垂直的性质.
(2)证明线面垂直的关键是证线线垂直,而证明线线垂直则需借助线面垂直的性质.因此,判定定理与性质定理的合理转化是证明线面垂直的基本思想.
二、面面垂直
(1)判定面面垂直的方法
①面面垂直的定义;
②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).
(2)在已知平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.
三、垂直的核心
(1)线面平行、垂直关系的证明问题的指导思想是线线、线面、面面关系的相互转化,交替使用平行、垂直的判定定理和性质定理;
(2)线线关系是线面关系、面面关系的基础.证明过程中要注意利用平面几何中的结论,如证明平行时常用的中位线、平行线分线段成比例;证明垂直时常用的等腰三角形的中线等;
(3)证明过程一定要严谨,使用定理时要对照条件、步骤书写要规范.
作业布置
1.设α,β是两个不同的平面,m是直线,且m⊂α,则“m⊥β”是“α⊥β”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
2.设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )
A.若α⊥β,m⊂α,n⊂β,则m⊥n
B.若α∥β,m⊂α,n⊂β,,则m∥n
C.若m⊥n,m⊂α,n⊂β,则α⊥β
D.若m⊥α,m∥n,n∥β,则α⊥β
3.如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
A.直线AB上
B.直线BC上
C.直线AC上
D.△ABC内部
4.如图,三棱柱ABC-A1B1C1中,侧棱AA1垂直底面A1B1C1,底面三角形A1B1C1是正三角形,E是BC中点,则下列叙述正确的是( )
A.CC1与B1E是异面直线
B.AC⊥平面ABB1A1
C.AE与B1C1是异面直线,且AE⊥B1C1
D.A1C1∥平面AB1E
5.如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:
①BD⊥AC;②△BAC是等边三角形;
③三棱锥D-ABC是正三棱锥;④平面ADC⊥平面ABC.
其中正确的是( )
A.①②④ B.①②③
C.②③④ D.①③④
6.已知三棱柱ABC—A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,则AC1与底面ABC所成角的余弦值等于( )
A.eq \f(2\r(2),3) B.eq \f(\r(7),3)
C.eq \f(\r(6),3) D.eq \f(\r(5),3)
7. 如图,∠BAC=90°,PC⊥平面ABC,则在△ABC和△PAC的边所在的直线中,与PC垂直的直线有________;与AP垂直的直线有________.
如图,直三棱柱ABC-A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,
F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.
9. 如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.
其中正确结论的序号是________.
10.在直二面角α-MN-β中,等腰直角三角形ABC的斜边BC⊂α,一直角边AC⊂β,BC与β所成角的正弦值为eq \f(\r(6),4),则AB与β所成的角是________.
11.如图,在四棱锥P-ABCD中,PA⊥CD,AD∥BC,∠ADC=∠PAB=90°,BC=CD=eq \f(1,2)AD.
(1)在平面PAD内找一点M,使得直线CM∥平面PAB,并说明理由;
(2)证明:平面PAB⊥平面PBD.
12.在三棱柱ABC-A1B1C1中,AC⊥BC,AC1⊥平面ABC,BC=CA=AC1.
(1)求证:AC⊥平面AB1C1;
(2)求直线A1B与平面AB1C1所成角的余弦值.
13.如图,在四棱锥P—ABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.
(1)求证:DC⊥平面PAC;
(2)求证:平面PAB⊥平面PAC;
(3)设点E为AB的中点,在棱PB上是否存在点F,使得PA∥平面CEF?说明理由.
文字语言
图形语言
符号语言
判定定理
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(a,b⊂α,a∩b=O,l⊥a,l⊥b))⇒l⊥α
性质定理
垂直于同一个平面的两条直线平行
eq \b\lc\ \rc\}(\a\vs4\al\c1(a⊥α,b⊥α))⇒a∥b
文字语言
图形语言
符号语言
判定定理
一个平面过另一个平面的垂线,则这两个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(l⊥α,l⊂β))⇒α⊥β
性质定理
两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直
eq \b\lc\ \rc\}(\a\vs4\al\c1(α⊥β,l⊂β,α∩β=a,l⊥a))⇒l⊥α
相关试卷
这是一份高中数学高考第八章 8 5直线、平面垂直-教师版(1),共27页。试卷主要包含了判断下列结论是否正确,下列命题中不正确的是等内容,欢迎下载使用。
这是一份高中数学高考第八章 8 3点、直线、平面的关系-学生版,共12页。试卷主要包含了四个公理,直线与直线的位置关系,等角定理,构造模型判断空间线面位置关系,下列命题中,正确的是等内容,欢迎下载使用。
这是一份高中数学高考第八章 8 4直线、平面平行-教师版(1),共22页。试卷主要包含了下列命题中正确的是等内容,欢迎下载使用。