2023年海南省三亚市中考数学模拟试卷(含答案)
展开
这是一份2023年海南省三亚市中考数学模拟试卷(含答案),共25页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。
1.(3分)2022的相反数是( )
A.B.﹣C.2022D.﹣2022
2.(3分)芝麻作为食品和药物,均被广泛使用,经测算一粒芝麻的质量约为0.00000201kg,用科学记数法表示一粒芝麻的质量应为( )
A.2.01×10﹣3kgB.2.01×10﹣6kg
C.20.1×10﹣6kgD.2.01×10﹣7kg
3.(3分)如图的几何体,从上向下看,看到的是( )
A.B.C.D.
4.(3分)将不等式x﹣3≥0的解集表示在数轴上,正确的是( )
A.
B.
C.
D.
5.(3分)如图,AB∥CD,∠1=70°,则∠2=( )
A.70°B.80°C.110°D.120°
6.(3分)某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是( )
A.众数是3B.中位数是0C.平均数是3D.极差是5
7.(3分)下列分式方程中,解为x=﹣1的是( )
A.B.
C.D.
8.(3分)如图,在平面直角坐标系中,Rt△ABO的顶点B在x轴的正半轴上,∠ABO=90°,点A的坐标为,将△ABO绕点O逆时针旋转,使点B的对应点B′落在边OA上,连接A、A′,则线段AA′的长度是( )
A.1B.2C.D.2
9.(3分)若反比例函数y=的图象经过点A(﹣3,4),则下列各点中也在这个函数图象的是( )
A.(﹣2,3)B.(4,﹣3)C.(﹣6,﹣2)D.(8,)
10.(3分)如图,一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BD,∠B=∠EDF=90°,∠A=30°,∠CED=15°,则∠F的度数是( )
A.15°B.25°C.45°D.60°
11.(3分)如图,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.若AG=3,则阴影部分的面积为( )
A.12B.12.5C.13D.13.5
12.(3分)如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为( )
A.6B.9C.12D.13.5
二、填空题(本大题共4小题,每小题3分,共12分)
13.(3分)因式分解:x3﹣2x2= .
14.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 .
15.(3分)如图,锐角△ABC中,∠A=30°,BC=6,△ABC的面积是6,D,E,F分别是三边上的动点,则△DEF周长的最小值是 .
16.(3分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,1),(3,0),(2,﹣1).点M从坐标原点O出发,第一次跳跃到点M1,使得点M1与点O关于点A成中心对称;第二次跳跃到点M2,使得点M2与点M1关于点B成中心对称;第三次跳跃到点M3,使得点M3与点M2关于点C成中心对称;第四次跳跃到点M4,使得点M4与点M3关于点A成中心对称;…,依此方式跳跃,点M2022的坐标是 .
三、(本大题共6小题,17题12分,18、19、20题各10分,21、22题15分,本大题满分72分)
17.(12分)计算下列各题:
(1)sin245°﹣+(﹣2006)0+6tan30°
(2)sin230°﹣cs45°•tan60°+﹣tan45°.
18.(10分)现有一段长为88米的河道清淤任务,由甲、乙两个工程队先后接力完成.甲队每天清理10米,乙队每天清理8米,两队共用时10天,则甲、乙工程队各清理了几天?
19.(10分)疫情期间,学校开通了教育互联网在线学习平台.为了解学生使用电子设备种类的情况,小淇设计了调查问卷,对该校七(1)班和七(2)班全体同学进行了问卷调查,发现使用了三种设备:A(平板)、B(电脑)、C(手机),根据调查结果绘制成如下两幅不完整的统计图.请根据图中信息解答下列问题.
(1)此次被调查的学生总人数为 ;
(2)求扇形统计图中代表类型C的扇形的圆心角,并补全折线图;
(3)若该校七年级学生共有1000人,试根据此次调查结果,估计该校七年级学生中类型C学生约有多少人.
20.(10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
21.(15分)【问题呈现】阿基米德折弦定理:阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.
证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.
∵M是的中点,
∴MA=MC,
又∵∠A=∠C,BA=GC,
∴△MAB≌△MCG,
∴MB=MG,
又∵MD⊥BC,
∴BD=DG,
∴AB+BD=CG+DG即CD=DB+BA.
【理解运用】如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD= ;
【变式探究】如图3,若点M是的中点,【问题呈现】中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.
【实践应用】如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,则AD= .
22.(15分)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.
(1)求抛物线的解析式和直线BC的解析式;
(2)求四边形ABDC的面积;
(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
2023年海南省三亚市中考数学模拟试卷
(参考答案)
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)
1.(3分)2022的相反数是( )
A.B.﹣C.2022D.﹣2022
【解答】解:2022的相反数等于﹣2022,
故选:D.
2.(3分)芝麻作为食品和药物,均被广泛使用,经测算一粒芝麻的质量约为0.00000201kg,用科学记数法表示一粒芝麻的质量应为( )
A.2.01×10﹣3kgB.2.01×10﹣6kg
C.20.1×10﹣6kgD.2.01×10﹣7kg
【解答】解:0.00000201kg=2.01×10﹣6kg.
故选:B.
3.(3分)如图的几何体,从上向下看,看到的是( )
A.B.C.D.
【解答】解:从上面看易得左边有1个正方形,右边有2个正方形,并且左边的正方形在上层.
故选:A.
4.(3分)将不等式x﹣3≥0的解集表示在数轴上,正确的是( )
A.
B.
C.
D.
【解答】解:不等式x﹣3≥0,
解得:x≥3,
表示在数轴上,如图所示:
.
故选:D.
5.(3分)如图,AB∥CD,∠1=70°,则∠2=( )
A.70°B.80°C.110°D.120°
【解答】解:∵∠1=70°,
∴∠3=∠1=70°,
∵AB∥CD,
∴∠2=180°﹣∠3=180°﹣70°=110°.
故选:C.
6.(3分)某小组长统计组内5人一天在课堂上的发言次数分别为3,3,0,4,5.关于这组数据,下列说法错误的是( )
A.众数是3B.中位数是0C.平均数是3D.极差是5
【解答】解:将数据重新排列为0,3,3,4,5,
则这组数的众数为3,中位数为3,平均数为=3,极差为5,
故选:B.
7.(3分)下列分式方程中,解为x=﹣1的是( )
A.B.
C.D.
【解答】解:当x=﹣1时,
A.中,左边=﹣2,右边=﹣1,A不符合题意;
B.中,x2﹣1=0,分母等于0,分式无意义,B不符合题意;
C.中,左边=﹣1+1=0=右边,C符合题意;
D.中,分母x+1=0,D不符合题意.
故选:C.
8.(3分)如图,在平面直角坐标系中,Rt△ABO的顶点B在x轴的正半轴上,∠ABO=90°,点A的坐标为,将△ABO绕点O逆时针旋转,使点B的对应点B′落在边OA上,连接A、A′,则线段AA′的长度是( )
A.1B.2C.D.2
【解答】解:∵A(1,),∠ABO=90°,
∴OB=1,AB=,
∴tan∠AOB==,
∴∠AOB=60°,
由旋转的性质可知,∠AOB=∠A′OA=60°,
∵OA=OA′,
∴△ABC是等边三角形,
∴AA′=OA=2OB=2,
故选:B.
9.(3分)若反比例函数y=的图象经过点A(﹣3,4),则下列各点中也在这个函数图象的是( )
A.(﹣2,3)B.(4,﹣3)C.(﹣6,﹣2)D.(8,)
【解答】解:∵反比例函数y=的图象经过点A(﹣3,4),
∴k=xy=(﹣3)×4=﹣12,
∵﹣2×3=﹣6≠﹣1,故选项A不符合题意,
∵4×(﹣3)=﹣12,故选项B符合题意,
∵﹣6×(﹣2)=12≠﹣12,故选项C不符合题意,
∵8×=12≠﹣12,故选项D不符合题意,
故选:B.
10.(3分)如图,一副直角三角尺如图摆放,点D在BC的延长线上,EF∥BD,∠B=∠EDF=90°,∠A=30°,∠CED=15°,则∠F的度数是( )
A.15°B.25°C.45°D.60°
【解答】解:
∵∠B=90°,∠A=30,
∴∠ACB=60°,
∵∠ACB=∠CED+∠EDB,
∴∠EDB=45°,
∵∠EDF=90°,
∴∠FDH=45°,
∵EF∥CD,
∴∠F=∠FDH=45°.
故选:C.
11.(3分)如图,在等腰直角三角形ABC中,∠BAC=90°,D为BC的中点,E为边AC上一点(不与端点重合),过点E作EG⊥BC于点G,作EH⊥AD于点H,过点B作BF∥AC交EG的延长线于点F.若AG=3,则阴影部分的面积为( )
A.12B.12.5C.13D.13.5
【解答】解:设DG=a,CG=b,则CD=a+b,
∵△ABC为等腰直角三角形,∠BAC=90°,
∴∠ABC=∠ACB=45°,AB=AC,
又∵D为BC的中点,
∴BD=AD=CD=a+b,BC=2BD=2(a+b),
∵EG⊥BC,EH⊥AD,
∴四边形DGEH为矩形,∠GEC=45°,
∴DH=EG=CG=b,
∵BF∥AC,
∴∠FBG=∠ACB=45°,
∵EF⊥BC,
∴∠F=45°,
∴GF=BG=BD+DG=a+b+a=2a+b,
由勾股定理得,AD2+DG2=AG2,
∴(a+b)2+a2=32,
整理得,2a2+2ab+b2=9,
由题意知,S阴=S△ABC+S△BGF﹣S矩形DGEH
=BC•AD+BG•GF﹣DG•DH
=BD•AD+BG2﹣DG•DH
=(a+b)2+(2a+b)2﹣ab
=a2+2ab+b2+2a2+ab+b2﹣ab
=(2a2+2ab+b2)
=×9
=13.5,
故选:D.
12.(3分)如图,在△ABC中,点D和E分别是边AB和AC的中点,连接DE,DC与BE交于点O,若△DOE的面积为1,则△ABC的面积为( )
A.6B.9C.12D.13.5
【解答】解:∵点D和E分别是边AB和AC的中点,
∴O点为△ABC的重心,
∴OB=2OE,
∴S△BOD=2S△DOE=2×1=2,
∴S△BDE=3,
∵AD=BD,
∴S△ABE=2S△BDE=6,
∵AE=CE,
∴S△ABC=2S△ABE=2×6=12.
故选C.
二、填空题(本大题共4小题,每小题3分,共12分)
13.(3分)因式分解:x3﹣2x2= x2(x﹣2) .
【解答】解:x3﹣2x2=x2(x﹣2).
故答案为:x2(x﹣2).
14.(3分)如图,该硬币边缘镌刻的正九边形每个内角的度数是 140° .
【解答】解:该正九边形内角和=180°×(9﹣2)=1260°,
则每个内角的度数==140°.
故答案为:140°.
15.(3分)如图,锐角△ABC中,∠A=30°,BC=6,△ABC的面积是6,D,E,F分别是三边上的动点,则△DEF周长的最小值是 2 .
【解答】解:如图,作E关于AB的对称点M,作E关于AC的对称点N,连接AE,MN,MN交AB于F,交AC于D,
由对称性可知:DE=DN,EF=MF,AE=AM=AN,
∴△DEF的周长DE+EF+FD=DM+DF+FN,
∴当点E固定时,此时△DEF的周长最小,
∵∠BAC=30°,∠BAE=∠BAM,∠CAE=∠CAN,
∴∠MAN=60°,
∴△MNA是等边三角形,
∴MN=AE,
∴当AE的值最小时,MN的值最小,
根据垂线段最短可知:当AE⊥BC时,AE的值最小,
∵BC=6,△ABC的面积是6,
∴BC•AE=6,
∴此时AE=2,
∴MN的最小值为2,
∴△DEF的周长的最小值为2,
故答案为:2.
16.(3分)如图,在平面直角坐标系中,点A,B,C的坐标分别为(1,1),(3,0),(2,﹣1).点M从坐标原点O出发,第一次跳跃到点M1,使得点M1与点O关于点A成中心对称;第二次跳跃到点M2,使得点M2与点M1关于点B成中心对称;第三次跳跃到点M3,使得点M3与点M2关于点C成中心对称;第四次跳跃到点M4,使得点M4与点M3关于点A成中心对称;…,依此方式跳跃,点M2022的坐标是 (0,0) .
【解答】解:如图,由题意,M1(2,2),M2(4,﹣2),M3(0,0),
发现3次应该循环,
∵2022÷3=674,
∴M2022的坐标与M3的坐标相同,即M2022(0,0).
故答案为:(0,0).
三、(本大题共6小题,17题12分,18、19、20题各10分,21、22题15分,本大题满分72分)
17.(12分)计算下列各题:
(1)sin245°﹣+(﹣2006)0+6tan30°
(2)sin230°﹣cs45°•tan60°+﹣tan45°.
【解答】解:(1)原式=﹣3++6×
=1﹣;
(2)原式=﹣×+1﹣1
=﹣.
18.(10分)现有一段长为88米的河道清淤任务,由甲、乙两个工程队先后接力完成.甲队每天清理10米,乙队每天清理8米,两队共用时10天,则甲、乙工程队各清理了几天?
【解答】解:设甲工程队清理了x天,乙工程队清理了y天,
依题意得:,
解得:.
答:甲工程队清理了4天,乙工程队清理了6天.
19.(10分)疫情期间,学校开通了教育互联网在线学习平台.为了解学生使用电子设备种类的情况,小淇设计了调查问卷,对该校七(1)班和七(2)班全体同学进行了问卷调查,发现使用了三种设备:A(平板)、B(电脑)、C(手机),根据调查结果绘制成如下两幅不完整的统计图.请根据图中信息解答下列问题.
(1)此次被调查的学生总人数为 100 ;
(2)求扇形统计图中代表类型C的扇形的圆心角,并补全折线图;
(3)若该校七年级学生共有1000人,试根据此次调查结果,估计该校七年级学生中类型C学生约有多少人.
【解答】解:(1)由扇形统计图知B类型人数所占比例为58%,从折线图知B类型总人数=26+32=58(人),
所以此次被调查的学生总人数=58÷58%=100(人);
(2)由折线图知A人数=18+14=32人,故A的比例为32÷100=32%,
所以C类比例=1﹣58%﹣32%=10%,
所以类型C的扇形的圆心角=360°×10%=36°,
C类人数=10%×100﹣2=8(人),补全折线图如下:
(3)1000×10%=100(人),
答:估计该校七年级学生中类型C学生约有100人.
20.(10分)如图,将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,点D落在点E处,直线MN交BC于点M,交AD于点N.
(1)求证:CM=CN;
(2)若△CMN的面积与△CDN的面积比为3:1,求的值.
【解答】(1)证明:∵将一张矩形纸片ABCD沿直线MN折叠,使点C落在点A处,
∴∠ANM=∠CNM,
∵四边形ABCD是矩形,
∴AD∥BC,
∴∠ANM=∠CMN,
∴∠CMN=∠CNM,
∴CM=CN;
(2)解:过点N作NH⊥BC于点H,
则四边形NHCD是矩形,
∴HC=DN,NH=DC,
∵△CMN的面积与△CDN的面积比为3:1,
∴===3,
∴MC=3ND=3HC,
∴MH=2HC,
设DN=x,则HC=x,MH=2x,
∴CM=3x=CN,
在Rt△CDN中,DC==2x,
∴HN=2x,
在Rt△MNH中,MN==2x,
∴==2.
21.(15分)【问题呈现】阿基米德折弦定理:阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,点M是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=DB+BA.下面是运用“截长法”证明CD=DB+BA的部分证明过程.
证明:如图2,在CD上截取CG=AB,连接MA、MB、MC和MG.
∵M是的中点,
∴MA=MC,
又∵∠A=∠C,BA=GC,
∴△MAB≌△MCG,
∴MB=MG,
又∵MD⊥BC,
∴BD=DG,
∴AB+BD=CG+DG即CD=DB+BA.
【理解运用】如图1,AB、BC是⊙O的两条弦,AB=4,BC=6,点M是的中点,MD⊥BC于点D,则BD= 1 ;
【变式探究】如图3,若点M是的中点,【问题呈现】中的其他条件不变,判断CD、DB、BA之间存在怎样的数量关系?并加以证明.
【实践应用】如图4,BC是⊙O的直径,点A圆上一定点,点D圆上一动点,且满足∠DAC=45°,若AB=6,⊙O的半径为5,则AD= 7或 .
【解答】解:【理解运用】:由题意可得CD=DB+BA,即CD=6﹣CD+AB,
∴CD=6﹣CD+4,
∴CD=5,
∴BD=BC﹣CD=6﹣5=1,
故答案为:1;
【变式探究】DB=CD+BA.
证明:在DB上截取BG=BA,连接MA、MB、MC、MG,
∵M是弧AC的中点,
∴AM=MC,∠MBA=∠MBG,
又MB=MB,
∴△MAB≌△MGB(SAS),
∴MA=MG,
∴MC=MG,
又DM⊥BC,
∴DC=DG,
∴AB+DC=BG+DG,即DB=CD+BA;
【实践应用】
如图,当点D1在BC下方时,过点D1作D1G1⊥AC于点G1,
∵BC是圆的直径,
∴∠BAC=90°,
∵AB=6,圆的半径为5,
∴AC=8,
∵∠D1AC=45°,
∴CG1+AB=AG1,
∴AG1=(6+8)=7,
∴AD1=7.
当点D2在BC上方时,∠D2AC=45°,同理易得AD2=.
综上所述:AD的长为7或,
故答案为7或.
22.(15分)如图,抛物线y=ax2+3x+c(a≠0)与x轴交于点A(﹣2,0)和点B,与y轴交于点C(0,8),顶点为D,连接AC,CD,DB,直线BC与抛物线的对称轴l交于点E.
(1)求抛物线的解析式和直线BC的解析式;
(2)求四边形ABDC的面积;
(3)P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=S△ABC时,求点P的坐标;
(4)在抛物线的对称轴l上是否存在点M,使得△BEM为等腰三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
【解答】解:(1)∵抛物线y=ax2+3x+c(a≠0)过点A(﹣2,0)和C(0,8),
∴,
解得,
∴抛物线的解析式为y=﹣x2+3x+8.
令y=0,得.
解得x1=﹣2,x2=8.
∴点B的坐标为(8,0).
设直线BC的解析式为y=kx+b.
把点B(8,0),C(0,8)分别代入y=kx+b,
得,
解得,
∴直线BC的解析式为y=﹣x+8.
(2)如图1,设抛物线的对称轴l与x轴交于点H.
∵抛物线的解析式为,
∴顶点D的坐标为.
∴S四边形ABDC=S△AOC+S梯形OCDH+S△BDH===70.
(3)∵.
∴.
如图2,过点P作PG⊥x轴,交x轴于点G,交BC于点F.
设点.
∵点F在直线BC上,
∴F(t,﹣t+8).
∴.
∴.
∴.
解得t1=2,t2=6.
∴点P的坐标为(2,12)或P(6,8).
(4)存在.
∵△BEM为等腰三角形,
∴BM=EM或BE=BM或BE=EM,
设M(3,m),
∵B(8,0),E(3,5),
∴BE==5,EM=|m﹣5|,BM==,
当BM=EM时,
=|m﹣5|,
∴m2+25=(m﹣5)2,
解得:m=0,
∴M(3,0);
当BE=BM时,
5=,
∴m2+25=50,
解得:m=﹣5或m=5(舍去),
∴M(3,﹣5);
当BE=EM时,
5=|m﹣5|,
解得:m=5+5或m=5﹣5,
∴M(3,5+5)或(3,5﹣5),
综上所述,点M的坐标为(3,0)或(3,﹣5)或(3,5+5)或(3,5﹣5).
相关试卷
这是一份2023年海南省中考数学模拟试卷(三)(含答案),共13页。试卷主要包含了若不等式,分式方程+=的根是,已知点P坐标为等内容,欢迎下载使用。
这是一份2023年海南省中考数学模拟试卷(一)(含答案),共15页。试卷主要包含了2023的相反数是,下列各式计算结果为a5的是,若点A,在平面直角坐标系中,点A等内容,欢迎下载使用。
这是一份2023年海南省三亚市崖州区中考数学一模试卷(含答案),共25页。试卷主要包含了选择题,填空题等内容,欢迎下载使用。