终身会员
搜索
    上传资料 赚现金
    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案
    立即下载
    加入资料篮
    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案01
    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案02
    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案

    展开
    这是一份2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案,共16页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    江西省重点中学盟校2023届高三第一次联考数学(文)试题

    一、选择题:本题共12小题,每小题5分,共60.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1. 设集合 则选项正确的是(   

    A.  B.

    C.  D.

    2. 已知均为实数,复数,则  

    A.  B.  C.  D.

    3. 已知,则的(   

    A. 充要条件 B. 充分不必要条件

    C. 必要不充分条件 D. 既不充分也不必要条件

    4. 据央视新闻报道,据国家电影局初步统计,2023年春节档(121日至127日)电影票房为67.58亿元,同比增长11.89%.春节档观影人次为1.29亿,同比增长13.16%;国产影片票房占比为99.22%.

    2023年春节档共12部电影上映,其中主打的6部国产影片累计票房如下:

    据上述信息,关于2023年春节档电影票房描述正确的是(  

    A. 主打的6部国产影片总票房约占2023春节档电影票房的.

    B. 2023年春节档非国产电影票房约0.98亿元.

    C. 主打的6部国产影片票房的中位数为6.205亿元.

    D. 电影《交换人生》的票房约为主打的6部国产影片外的其他春节档电影票房总的3.

    5. 已知向量,则向量投影等于(  

    A.  B.  C.  D. 7

    6. 设函数定义域为,则函数与函数的图象关于(  

    A. 直线对称 B. 直线对称

    C 直线对称 D. 直线对称

    7. 设函数的图像大致如下图,则f()= 

    A.  B.  C.  D.

    8. 中国古建筑不仅是挡风遮雨的住处,更是美学和哲学的体现.如图是某古建筑物的剖面图,是举,是相等的步,相邻桁的举步之比分别为,且成首项为0.114的等差数列,若直线的斜率为0.414,则该数列公差等于(  

    A. 0.1 B. 0.2 C. 0.3 D. 0.4

    9. 已知函数为奇函数,则处的切线方程为(  )

    A.  B.

    C.  D.

    10. 已知球是正三棱锥的外接球,D的中点,且,侧棱,则球O的表面积为(   

    A. 12 B. 8 C. 32 D. 48

    11. 已知抛物线的焦点F与双曲线=1的右焦点重合,该抛物线的准线与x轴的交点为K,点A在抛物线上且,则A点的横坐标为(   

    A.  B. 2 C.  D. 5

    12. 已知函数,其导函数的两根为,若不等式的解集为,且,则极大值为(  

    A.  B.  C.  D.

    二、填空题:本题共4小题,每小题5分,共20.

    13. 若实数满足约束条件的最小值为 _______.

    14. 已知椭圆的中心在原点,焦点在y轴上,离心率为,请写出一个符合上述条件的椭圆的标准方程__________.

    15. 记数列的前项和为,则________.

    16. 在正四棱柱中,E 中点,为正四棱柱表面上一点,且,则点的轨迹的长为_____.

    三、解答题:共70.解答应写出文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.2223题为选考题,考生根据要求作答.

    (一)必考题:60.

    17. 为了提高学习数学的兴趣,形成良好的数学学习氛围,某校将举行“‘象山杯数学解题能力比赛,每班派人参加,某班级老师已经确定参赛名额,第个参赛名额在甲,乙同学间产生,为了比较甲,乙两人解答某种题型的能力,现随机抽取这两个同学各次之前该题型的解答结果如下:,其中分别表示甲正确和错误;分别表示乙正确和错误.

    1若解答正确给该同学分,否则记分.试计算甲、乙两人之前的成绩的平均数和方差,并根据结果推荐谁参加比赛更合适;

    2若再安排甲、乙两人解答一次该题型试题,试估计恰有一人解答正确的概率.

    18. 中,内角ABC的对边分别为abc,且满足

    1求角A

    2的面积为DBC边上一点,且BD=2CD,求AD的最小值.

    19. 如图:在四棱锥中,底面为平行四边形,为线段上一点,且,平面与侧棱交于点.

    1

    2平面将四棱锥分成了上下两部分,求四棱锥和多面体的体积之比.

    20. 设函数

    1时,求函数在定义域内的最小值;

    2求实数的取值范围.

    21. 已知圆过点.

    1求圆的标准方程;

    2若过点且与轴平行直线与圆交于点,点为直线上的动点,直线与圆的另一个交点分别为不重合),证明:直线过定点.

    (二)选考题:共10.请考生在第2223题中任选一题作答,如果多做,则按所做的第一题计分.

    [选修44:坐标系与参数方程]

    22. 在直角坐标系中,曲线的参数方程为为参数)以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

    1求曲线和曲线的直角坐标方程;

    2若曲线和曲线交于两点,且点,求的值.

    [选修45:不等式选讲]

    23. 已知函数

    1,解不等式;

    2,且的最小值为求证.

     

     

     

     

     

     

     

     

     

     

     

     

     

     

    江西省重点中学盟校2023届高三第一次联考数学(文)试题

    一、选择题:本题共12小题,每小题5分,共60.在每小题给出的四个选项中,只有一项是符合题目要求的.

    1.【答案】B

    2.【答案】C

    3.【答案】A

    4.【答案】B

    5.【答案】A

    6.【答案】B

    7.【答案】D

    8.【答案】B

    9.【答案】C

    10.【答案】D

    11.【答案】D

    12.【答案】D

    二、填空题:本题共4小题,每小题5分,共20.

    13.

    【答案】##3.5

    14.

    【答案】

    15. 【答案】##

    16.

    【答案】##

    三、解答题:共70.解答应写出文字说明、证明过程或演算步骤.17~21题为必考题,每个试题考生都必须作答.2223题为选考题,考生根据要求作答.

    (一)必考题:60.

    17. 为了提高学习数学的兴趣,形成良好的数学学习氛围,某校将举行“‘象山杯数学解题能力比赛,每班派人参加,某班级老师已经确定参赛名额,第个参赛名额在甲,乙同学间产生,为了比较甲,乙两人解答某种题型的能力,现随机抽取这两个同学各次之前该题型的解答结果如下:,其中分别表示甲正确和错误;分别表示乙正确和错误.

    1若解答正确给该同学分,否则记分.试计算甲、乙两人之前的成绩的平均数和方差,并根据结果推荐谁参加比赛更合适;

    2若再安排甲、乙两人解答一次该题型试题,试估计恰有一人解答正确的概率.

    【答案】1甲的平均数为,方差为,乙的平均数为,方差为,推荐乙参加比赛更合适   

    2

    【解析】

    【分析】1)根据平均数与方差的公式分别计算甲、乙两人的平均数与方程,进而推荐人选;

    2)利用古典概型的概率公式估计恰有一人正确的概率.

    【小问1详解】

    由已知得甲的平均数,方差

    乙的平均数,方差

    因为,且

    所以推荐乙参加比赛更合适;

    【小问2详解】

    由已知的个结果中,恰有一人解答正确的结果是,共个,

    所以恰有一人正确的概率为.

    18. 中,内角ABC的对边分别为abc,且满足

    1求角A

    2的面积为DBC边上一点,且BD=2CD,求AD的最小值.

    【答案】1   

    2.

    【解析】

    【分析】1)根据正弦定理,结合三角恒等变换可得到,从而可得出答案;

    2)由已知结合三角形的面积公式可求得,根据向量的线性表示及向量的数量积的性质和基本不等式即可求解.

    【小问1详解】

    由正弦定理得

    ,则

    化简得

    ,则

    所以,所以

    【小问2详解】

    由(1)得,则,得

    BD=2CD,则

    所以

    当且仅当,即时等号成立,

    所以最小值为

    19. 如图:在四棱锥中,底面为平行四边形,为线段上一点,且,平面与侧棱交于点.

    1

    2平面将四棱锥分成了上下两部分,求四棱锥和多面体的体积之比.

    【答案】1   

    2.

    【解析】

    【分析】1)根据线面平行的判定定理和性质定理,结合平行线的性质进行求解即可;

    2)根据棱锥的体积公式,结合棱锥的性质进行求解即可.

    【小问1详解】

    因为为平行四边形,所以

    因为平面平面

    所以平面,因为平面与侧棱交于点

    所以平面平面,而平面

    于是有

    所以

    【小问2详解】

    设四棱锥的体积为

    由(1)可知: ,所以到平面的距离到平面的距离满足:,因此

    因为,所以,即

    因为,所以

    所以

    所以.

    20. 设函数

    1时,求函数在定义域内的最小值;

    2求实数的取值范围.

    【答案】11    2

    【解析】

    【分析】(1)求导判断其单调性,从而可求得最小值;

    (2),则问题转化为当恒成立求实数的取值范围.求导,分类讨论判断可知当时有最小值从而可求;当时没办法确定最小值,可通过确定来判断不成立.

    【小问1详解】

    时,,其定义域为

    .

    .

    时,;当时,

    所以上单调递减,在上单调递增.

    故函数在定义域内的最小值为.

    【小问2详解】

    恒成立.

    时,令.

    时,单调递减;当时,单调递增.

    所以,原不等式成立.

    时,时,单调递增.

    所以当时,,所以不成立.

    时,时,单调递减.

    所以当时,,所以不成立.

    时,令

    所以不成立.

    综上所述,实数的取值范围为.

    【点睛】关键点点睛:

    第二问可以转化为恒成立.从而确定的最小值.时没办法确定最小值,可通过确定来判断不成立.

    21. 已知圆过点.

    1求圆的标准方程;

    2若过点且与轴平行的直线与圆交于点,点为直线上的动点,直线与圆的另一个交点分别为不重合),证明:直线过定点.

    【答案】1   

    2

    【解析】

    【分析】1)利用待定系数法求得圆一般方程,再将其转化为标准方程;

    2)求出点的坐标,设,根据,得出的坐标,当直线斜率存在时,设直线方程为,与圆方差联立方程组,利用根与系数关系化简得出的关系,进而得出直线恒过的定点坐标,再验证斜率不存在时仍成立.

    【小问1详解】

    设圆一般方程为

    又圆过点

    解得

    所以圆的一般方程为

    即其标准方程为

    【小问2详解】

    由题意得,所以直线,点,点

    设点

    所以

    所以

    在圆上,

    所以

    所以

    整理得:

    当直线斜率存在时,设直线的方程为

    代入

    所以

    时,直线的方程为,过点

    时,直线的方程为,过点,在直线上,不成立,

    当直线斜率不存在时,,即,解得(舍),所以直线成立,

    综上所述,直线恒过点.

    (二)选考题:共10.请考生在第2223题中任选一题作答,如果多做,则按所做的第一题计分.

    [选修44:坐标系与参数方程]

    22. 在直角坐标系中,曲线的参数方程为为参数)以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为

    1求曲线和曲线的直角坐标方程;

    2若曲线和曲线交于两点,且点,求的值.

    【答案】1   

    2

    【解析】

    【分析】1)利用消参法可得的直角坐标方程,再利用极坐标与直角坐标的转化公式可得的直角坐标方程;

    2)利用直线参数方程的几何意义直接计算.

    【小问1详解】

    的参数方程为为参数),

    消参可得,即

    的极坐标方程为,即

    所以

    【小问2详解】

    由(1)的,即

    的参数方程转化为标准参数方程为参数)

    代入,即

    又由的参数方程可知过点

    所以.

    [选修45:不等式选讲]

    23. 已知函数

    1,解不等式;

    2,且的最小值为求证.

    【答案】1   

    2证明见解析

    【解析】

    【分析】1)对绝对值函数进行分段讨论,解不等式即可;

    2)利用三角不等式求得的最小值,得到,再利用基本不等式证明即可.

    【小问1详解】

    时,函数

    时,由,即,解得,所以

    时,由,即,解得,所以

    时,由,即,解得,所以.

    综上,不等式的解集为.

    【小问2详解】

    因为

    ,即时,取到最小值

    所以,即.

    所以,当且仅当时等号成立.

    成立.

     

    相关试卷

    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学理试卷word版含答案: 这是一份2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学理试卷word版含答案,文件包含理科数学试卷1853docx、理科试卷1853pdf、理科数学答题卡定pdf等3份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考数学文试卷PDF版含答案: 这是一份2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考数学文试卷PDF版含答案,共15页。

    2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考数学理试卷PDF版含答案: 这是一份2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考数学理试卷PDF版含答案,文件包含理科数学试卷1853pdf、理科试卷1853pdf、理科数学答题卡定pdf等3份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届江西省景德镇市第一中学重点中学盟校高三下学期第一次联考(月考)数学文试卷含答案
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map