高考数学真题与模拟训练汇编专题01 集合与常用逻辑用语(教师版)
展开
这是一份高考数学真题与模拟训练汇编专题01 集合与常用逻辑用语(教师版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
专题1 集合与常用逻辑用语第一部分 真题分类一、单选题1.(2021·北京高考真题)已知是定义在上的函数,那么“函数在上单调递增”是“函数在上的最大值为”的( )A.充分而不必要条件 B.必要而不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A【解析】若函数在上单调递增,则在上的最大值为,若在上的最大值为,比如,但在为减函数,在为增函数,故在上的最大值为推不出在上单调递增,故“函数在上单调递增”是“在上的最大值为”的充分不必要条件,故选:A.2.(2021·北京高考真题)已知集合,,则( )A. B. C. D.【答案】B【解析】由题意可得:,即.故选:B.3.(2021·浙江高考真题)设集合,,则( )A. B. C. D.【答案】D【解析】由交集的定义结合题意可得:.故选:D.4.(2021·浙江高考真题)已知非零向量,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分又不必要条件【答案】B【解析】若,则,推不出;若,则必成立,故“”是“”的必要不充分条件故选:B.5.(2021·全国高考真题(文))设集合,则( )A. B. C. D.【答案】B【解析】,故,故选:B.6.(2021·全国高考真题(理))设集合,则( )A. B.C. D.【答案】B【解析】因为,所以,故选:B.7.(2021·全国高考真题(理))等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则( )A.甲是乙的充分条件但不是必要条件B.甲是乙的必要条件但不是充分条件C.甲是乙的充要条件D.甲既不是乙的充分条件也不是乙的必要条件【答案】B【解析】由题,当数列为时,满足,但是不是递增数列,所以甲不是乙的充分条件.若是递增数列,则必有成立,若不成立,则会出现一正一负的情况,是矛盾的,则成立,所以甲是乙的必要条件.故选:B.8.(2021·全国高考真题(理))已知集合,,则( )A. B. C. D.【答案】C【解析】任取,则,其中,所以,,故,因此,.故选:C.9.(2021·全国高考真题(理))已知命题﹔命题﹐,则下列命题中为真命题的是( )A. B. C. D.【答案】A【解析】由于,所以命题为真命题;由于,所以,所以命题为真命题;所以为真命题,、、为假命题.故选:A.10.(2021·全国高考真题(文))已知全集,集合,则( )A. B. C. D.【答案】A【解析】由题意可得:,则.故选:A.11.(2021·全国高考真题)设集合,,则( )A. B. C. D.【答案】B【解析】由题设有,故选:B .12.(2020·全国高考真题(理))已知集合U={−2,−1,0,1,2,3},A={−1,0,1},B={1,2},则( )A.{−2,3} B.{−2,2,3} C.{−2,−1,0,3} D.{−2,−1,0,2,3}【答案】A【解析】由题意可得:,则.故选:A.13.(2020·天津高考真题)设,则“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】A【解析】求解二次不等式可得:或,据此可知:是的充分不必要条件.故选:A.14.(2020·北京高考真题)已知,则“存在使得”是“”的( ).A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件【答案】C【解析】(1)当存在使得时,若为偶数,则;若为奇数,则;(2)当时,或,,即或,亦即存在使得.所以,“存在使得”是“”的充要条件.故选:C.15.(2020·浙江高考真题)设集合S,T,SN*,TN*,S,T中至少有两个元素,且S,T满足:①对于任意x,yS,若x≠y,都有xyT②对于任意x,yT,若x<y,则S;下列命题正确的是( )A.若S有4个元素,则S∪T有7个元素B.若S有4个元素,则S∪T有6个元素C.若S有3个元素,则S∪T有5个元素D.若S有3个元素,则S∪T有4个元素【答案】A【解析】首先利用排除法:若取,则,此时,包含4个元素,排除选项 C;若取,则,此时,包含5个元素,排除选项D;若取,则,此时,包含7个元素,排除选项B;下面来说明选项A的正确性:设集合,且,,则,且,则,同理,,,,,若,则,则,故即,又,故,所以,故,此时,故,矛盾,舍.若,则,故即,又,故,所以,故,此时.若, 则,故,故,即,故,此时即中有7个元素.故A正确.故选:A.16.(2020·海南高考真题)设集合A={x|1≤x≤3},B={x|2<x<4},则A∪B=( )A.{x|2<x≤3} B.{x|2≤x≤3}C.{x|1≤x<4} D.{x|1<x<4}【答案】C【解析】故选:C17.(2020·全国高考真题(理))已知集合,,则中元素的个数为( )A.2 B.3 C.4 D.6【答案】C【解析】由题意,中的元素满足,且,由,得,所以满足的有,故中元素的个数为4.故选:C.18.(2020·全国高考真题(理))设集合A={x|x2–4≤0},B={x|2x+a≤0},且A∩B={x|–2≤x≤1},则a=( )A.–4 B.–2 C.2 D.4【答案】B【解析】求解二次不等式可得:,求解一次不等式可得:.由于,故:,解得:.故选:B.二、填空题19.(2020·全国高考真题(理))设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.p2:过空间中任意三点有且仅有一个平面.p3:若空间两条直线不相交,则这两条直线平行.p4:若直线l平面α,直线m⊥平面α,则m⊥l.则下述命题中所有真命题的序号是__________.①②③④【答案】①③④【解析】对于命题,可设与相交,这两条直线确定的平面为;若与相交,则交点在平面内,同理,与的交点也在平面内,所以,,即,命题为真命题;对于命题,若三点共线,则过这三个点的平面有无数个,命题为假命题;对于命题,空间中两条直线相交、平行或异面,命题为假命题;对于命题,若直线平面,则垂直于平面内所有直线,直线平面,直线直线,命题为真命题.综上可知,,为真命题,,为假命题,为真命题,为假命题,为真命题,为真命题.故答案为:①③④.20.(2019·江苏高考真题)已知集合,,则_____.【答案】.【解析】由题知,. 三、解答题21.已知等差数列的公差,数列满足,集合.(1)若,求集合;(2)若,求使得集合恰好有两个元素;(3)若集合恰好有三个元素:,是不超过7的正整数,求的所有可能的值.【答案】(1);(2)或;(3)【解析】(1), ,,,,,由周期性可知,以为周期进行循环(2),,恰好有两个元素或即或或(3)由恰好有个元素可知:当时,,集合,符合题意; 当时,,或因为为公差的等差数列,故 又,故当时,如图取,,符合条件 当时,,或因为为公差的等差数列,故 又,故当时,如图取,,符合条件当时,,或因为为公差的等差数列,故 又,故当时,如图取时,,符合条件当时,,或因为为公差的等差数列,故 又,故当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有,即,即,,不符合条件;当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有,即,即,不是整数,故不符合条件; 当时,因为对应个正弦值,故必有一个正弦值对应三个点,必然有或若,即,不是整数,若,即,不是整数,故不符合条件;综上:22.设n为正整数,集合A=.对于集合A中的任意元素和,记M()=.(Ⅰ)当n=3时,若,,求M()和M()的值;(Ⅱ)当n=4时,设B是A的子集,且满足:对于B中的任意元素,当相同时,M()是奇数;当不同时,M()是偶数.求集合B中元素个数的最大值; (Ⅲ)给定不小于2的n,设B是A的子集,且满足:对于B中的任意两个不同的元素,M()=0.写出一个集合B,使其元素个数最多,并说明理由.【答案】(1)2,1;(2) 最大值为4;(3) 【解析】(Ⅰ),.(Ⅱ)考虑数对只有四种情况:、、、,相应的分别为、、、,所以中的每个元素应有奇数个,所以中的元素只可能为(上下对应的两个元素称之为互补元素):、、、,、、、,对于任意两个只有个的元素,都满足是偶数,所以集合、、、满足题意,假设中元素个数大于等于,就至少有一对互补元素,除了这对互补元素之外还有至少个含有个的元素,则互补元素中含有个的元素与之满足不合题意,故中元素个数的最大值为.(Ⅲ),此时中有个元素,下证其为最大.对于任意两个不同的元素,满足,则,中相同位置上的数字不能同时为,假设存在有多于个元素,由于与任意元素都有,所以除外至少有个元素含有,根据元素的互异性,至少存在一对,满足,此时不满足题意,故中最多有个元素. 第二部分 模拟训练一、单选题1.设非空集合满足:当时,有.给出如下三个命题:①若,则;②若,则;③若,则.其中正确命题的个数是( )A.0 B.1 C.2 D.3【答案】D【解析】由定义设非空集合满足:当时,有,符合定义的参数的值一定大于等于,符合条件的的值一定大于等于0或小于等于1,对于①若,,故必有,可得,故,故①正确;对于②若,,则,解得,故②正确;对于③若,则,可解得,故③正确.①②③都为真命题,所以正确命题的个数是,故选:D2.已知直线是平面和平面的交线,异面直线,分别在平面和平面内.命题:直线,中至多有一条与直线相交;命题:直线,中至少有一条与直线相交;命题:直线,都不与直线相交.则下列命题中是真命题的为( )A. B. C. D.【答案】C【解析】由题意直线是平面和平面的交线,异面直线,分别在平面和平面内,可知,命题:直线,可以都与直线l相交,所以命题为假命题;命题:若直线,都不与直线相交,则直线,都平行于直线,那么直线,平行,与题意,为异面直线矛盾,所以命题为真命题;命题:直线,都不与直线相交,则直线,都平行于直线,那么直线,平行,与题意,为异面直线矛盾,所以命题为假命题;由复合命题真假可知,对于A,为假命题,为假命题,所以为假命题,对于B,为真命题,为假命题,所以为假命题,对于C,为真命题,为真命题,所以为真命题,对于D,为真命题,为假命题,所以为假命题,综上可知,C为真命题,故选:C.3.下列命题中,不是真命题的是( )A.命题“若,则”的逆命题.B.“”是“且”的必要条件.C.命题“若,则”的否命题.D.“”是“”的充分不必要条件.【答案】A【解析】命题“若,则”的逆命题为:若,则,显然是错误的,当m=0时则不成立,故A是假命题.4.已知集合,,则=( )A. B. C. D.【答案】A【解析】 , 选A.5.下列命题中错误的是( )A.命题“若,则”的逆否命题是真命题B.命题“”的否定是“”C.若为真命题,则为真命题D.已知,则“”是“”的必要不充分条件【答案】C【解析】对于A,若x=y,则sinx=siny,显然原命题正确,则逆否命题也为真命题.故A正确;对于B,命题“”的否定是“”,故B正确;对于C,若为真命题,则至少有一个是真命题,故不一定为真命题,故C错误;对于D,充分性:当时,显然不成立,即充分性不具备;必要性:因为,根据幂函数的单调性,显然,即必要性具备,故D正确.故选C6.下列叙述中正确的是( )A.若,则“”的充分条件是“”B.若,则“”的充要条件是“”C.命题“对任意,有”的否定是“存在,有”D.是一条直线,是两个不同的平面,若,则【答案】D【解析】当时,推不出,错,当时,推不出,错,命题“对任意,有”的否定是“存在,有”,C错,因为与同一直线垂直的两平面平行,所以D正确.7.下列有关命题的说法正确的是( )A.,使得成立.B.命题:任意,都有,则:存在,使得.C.命题“若且,则且”的逆命题为真命题.D.若数列是等比数列,则是的必要不充分条件.【答案】D【解析】由,得,其判别式,此方程无解,故A选项错误.对于B选项,全称命题的否定是特称命题,应改为,故B选项错误.对于C选项,原命题的逆命题是“若且,则且”,如,满足且但不满足且,所以为假命题.对于D选项,若,为等比数列,,但;另一方面,根据等比数列的性质,若,则.所以是的必要不充分条件.故选D.
相关试卷
这是一份高考数学真题与模拟训练汇编专题23 抛物线(教师版),共15页。试卷主要包含了抛物线C的顶点为坐标原点O等内容,欢迎下载使用。
这是一份高考数学真题与模拟训练汇编专题21 椭圆(教师版),共28页。试卷主要包含了已知椭圆C,已知椭圆C1等内容,欢迎下载使用。
这是一份高考数学真题与模拟训练汇编专题19 圆与方程(教师版),共12页。