高中数学高考考点14 指数函数(原卷版)
展开
这是一份高中数学高考考点14 指数函数(原卷版),共6页。
考点14 指数函数【命题解读】在高考中指数函数部分往往与其他知识点交汇考查,也常与函数的图像结合考查。重点考查与此有关的性质。【基础知识回顾】 .指数函数及其性质(1)概念:函数y=ax(a>0且a≠1)叫做指数函数,其中指数x是变量,函数的定义域是R,a是底数.(2)指数函数的图象与性质 a>10<a<1图象定义域(1)R值域(2)(0,+∞)性质(3)过定点(0,1),即x=0时,y=1(4)当x>0时,y>1;当x<0时,0<y<1(5)当x<0时,y>1;当x>0时,0<y<1(6)在(-∞,+∞)上是增函数(7)在(-∞,+∞)上是减函数[常用结论]1.指数函数图象的画法画指数函数y=ax(a>0,且a≠1)的图象,应抓住三个关键点:(1,a),(0,1),.2.指数函数的图象与底数大小的比较 如图是指数函数(1)y=ax,(2)y=bx,(3)y=cx,(4)y=dx的图象,底数a,b,c,d与1之间的大小关系为c>d>1>a>b>0.由此我们可得到以下规律:在第一象限内,指数函数y=ax(a>0,a≠1)的图象越高,底数越大.3.指数函数y=ax(a>0,a≠1)的图象和性质跟a的取值有关,要特别注意应分a>1与0<a<1来研究. 1、 设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )A.a<b<c B.a<c<bC.b<a<c D.b<c<a2、函数f(x)=ax-b的图象如图所示,其中a,b为常数,则下列结论正确的是( )A.a>1,b<0 B.a>1,b>0C.0<a<1,b>0 D.0<a<1,b<03、若函数y=(a2-1)x是R上的减函数,则实数a的取值范围是( )A. 1<a<B. -<a<-1C. 1<a<,或-<a<-1D. <a<1,或1<a<4、已知函数f(x)=ax-3+2的图像恒过定点A,则A的坐标为 . 5、函数的值域为( )A. B. C.(0,] D.(0,2]考向一 指数函数的性质与应用例1、(1).已知定义在R上的函数f(x)=2|x-m|-1(m为实数)为偶函数,记a=f(log0.53),b=f(log25),c=f(2m),则a,b,c的大小关系为( )A.b<a<c B.c<a<b C.c<b<a D.a<b<c.(2).如果函数y=a2x+2ax-1(a>0,a≠1)在区间[-1,1]上的最大值是14,则a的值为( )A.3 B. C.-5 D.3或.(3).已知函数f(x)=2|2x-m|(m为常数),若f(x)在区间[2,+∞)上是增函数,则m的取值范围是________. 变式1、(1)函数f(x)=的单调减区间为 .(2)(一题两空)已知函数f(x)=a|x+1|(a>0,且a≠1)的值域为[1,+∞),则a的取值范围为________,f(-4)与f(1)的大小关系是________.(3)(2019·福建泉州五中模拟)设a>0,且a≠1,函数y=a2x+2ax-1在[-1,1]上的最大值是14,则实数a的值为________. 变式2、(江苏省南通市通州区2019-2020学年高三第一次调研抽测】不等式的解集为_______. 变式4、(2020·包头模拟)已知实数a≠1,函数f(x)=若f(1-a)=f(a-1),则a的值为______. 方法总结: 指数函数的性质有着广泛的应用,常见的有:比较大小,解不等式,求函数的单调区间和值域、最值等等.(1)比较两个幂值的大小问题是常见问题,解决这类问题首先要分清底数是否相同;若底数相同,则可利用函数的单调性解决;若底数不同,则要利用中间变量进行比较.(2)与指数函数有关的指数型函数的定义域、值域(最值)、单调性、奇偶性问题,常常需要借助换元等手段将其化归于指数函数来解,体现化归与转化思想的运用.(3)在利用指数函数的性质解决与指数函数相关的问题时,要特别注意底数a的取值范围,并在必要时须分底数0<a<1和a>1两种情形进行分类讨论,防止错解考向二 指数函数的图像与性质例2、如图,过原点O的直线与函数y=2x的图像交于A,B两点,过点B作y轴的垂线交函数y=4x的图像于点C,若AC平行于y轴,则点A的坐标是________.变式1、(2020届江苏省南通市海安高级中学高三第二次模拟)已知过点的直线与函数的图象交于、两点,点在线段上,过作轴的平行线交函数的图象于点,当∥轴,点的横坐标是 变式2、(2020届山东省滨州市高三上期末)已知,,,则a,b,c的大小关系是( )A. B. C. D. 变式3、(2019·广西北海一中月考)函数y=ax-(a>0,且a≠1)的图象可能是( )变式4、 已知f(x)=|2x-1|.(1)求f(x)的单调区间;(2)比较f(x+1)与f(x)的大小;(3)试确定函数g(x)=f(x)-x2的零点的个数. 方法总结:指数函数的图像直观的刻画了指数函数的性质,在解题中有着十分广泛的应用.(1)已知函数解析式判断其图像一般是取特殊点,判断所给的图像是否过这些点,若不满足则排除;(2)对于有关指数型函数的图像问题,一般是从最基本的指数函数的图像入手,通过平移、伸缩、对称变换而得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论;(3)有关指数方程、不等式问题的求解,往往利用相应的指数函数图像,数形结合求解.考向三 指数函数的综合运用例3、关于函数f (x)=的性质,下列说法中正确的是( )A.函数f (x)的定义域为RB.函数f (x)的值域为(0,+∞)C.方程f (x)=x有且只有一个实根D.函数f (x)的图象是中心对称图形变式1、(2020届江苏省南通市如皋市高三上学期教学质量调研(二))已知函数,若,则实数 _____. 变式2、已知定义域为R的函数f(x)=是奇函数.(1) 求a,b的值;(2) 若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的取值范围. 变式3、设a是实数,f(x)=a-(x∈R).(1) 试证明对于任意a,f(x)都为增函数;(2) 试确定a的值,使f(x)为奇函数. 方法总结:指数函数性质的综合应用,其方法是:首先判断指数型函数的性质,再利用其性质求解以上问题都是指数型函数问题,关键应判断其单调性,对于形如y=af(x)的函数的单调性,它的单调区间与f(x)的单调区间有关:若a>1,函数f(x)的单调增(减)区间即函数y=af(x)的单调增(减)区间;若0<a<1,函数f(x)的单调增(减)区间即函数y=af(x)的单调减(增)区间 1、(2018全国卷Ⅱ)函数的图像大致为2、(2020届山东省烟台市高三上期末)设,,,则的大小关系为( )A. B. C. D.3、(2017北京)已知函数,则A.是奇函数,且在R上是增函数 B.是偶函数,且在R上是增函数C.是奇函数,且在R上是减函数 D.是偶函数,且在R上是减函数4、(2012山东)若函数在上的最大值为4,最小值为,且函数在上是增函数,则a= .5、已知函数f(x)=3x-.(1)若f(x)=2,求x的值;(2)判断x>0时,f(x)的单调性;(3)若3tf(2t)+mf(t)≥0对于t∈恒成立,求m的取值范围.