终身会员
搜索
    上传资料 赚现金
    考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)
    立即下载
    加入资料篮
    考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)01
    考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)02
    考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)03
    还剩15页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版)

    展开
    这是一份考向05 复数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版),共18页。

    考向05  复数

    2022年新高考全国卷】,则       

    A B C1 D2

    【答案】D

    【解析】

    【分析】

    利用复数的除法可求,从而可求.

    【详解】

    由题设有,故,故

    故选:D

    2022年新高考全国II卷】       

    A B C D

    【答案】D

    【解析】

    【分析】

    利用复数的乘法可求.

    【详解】

    故选:D.

    1求一个复数的实部与虚部,只需将已知的复数化为代数形式,则该复数的实部为,虚部为.

    2求一个复数的共轭复数,只需将此复数整理成标准的代数形式,实部不变,虚部变为相反数,即得原复数的共轭复数.

    3复数z、复平面上的点及向量相互联系,即

    4由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.

    5复数的加减法:在进行复数加减法运算时,可类比合并同类项,运用法则实部与实部相加减,虚部与虚部相加减计算即可.

    6复数的乘法:复数的乘法类似于多项式的四则运算,可将含有虚数单位的看作一类同类项,不含的看作另一类同类项,分别合并即可.

    7复数的除法:除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把的幂写成最简形式.

    常用结论

    1

    2.

    3

    4

    1.复数的有关概念

    1复数的概念:

    形如的数叫复数,其中分别是它的实部和虚部.,则为实数;若,则为虚数;若,则为纯虚数.

    2复数相等:.

    3共轭复数:共轭.

    4复数的模:

    向量的模叫做复数的模,记作,即.

    2.复数的几何意义

    1复数复平面内的点.

    2复数平面向量.

    3.复数的运算

    ,则

    1加法:

    2减法:

    3乘法:

    4除法:.

    1.(2022·全国·模拟预测)       

    A B C D

    【答案】B

    【解析】

    【分析】

    直接利用复数的四则运算求解即可.

    【详解】

    .

    故选:B.

    2.(2022·全国·模拟预测)若复数满足为虚数单位),则在复平面内所对应的点位于(       

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

    【答案】D

    【解析】

    【分析】

    根据复数的模长与乘法除法运算求解可得,再根据复数的几何意义分析即可

    【详解】

    因为,即,故,所以在复平面内所对应的点为,位于第四象限.

    故选:D

    3.(2022·青海·模拟预测(理))若xi为虚数单位),则复数在复平面内所对应的点位于(       

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

    【答案】C

    【解析】

    【分析】

    根据给定条件,利用复数乘法结合复数相等求出xy即可求解作答.

    【详解】

    ,则有,而,有,解得

    所以复数在复平面内所对应的点位于第三象限.

    故选:C

    4.(2022·广东茂名·二模)已知复数z在复平面内对应的点为z的共轭复数,则(  )

    A B C D

    【答案】B

    【解析】

    【分析】

    求出,再由复数的除法运算可得答案.

    【详解】

    复数z在复平面内对应的点为

    .

    故选:B

    5.(2022·江苏无锡·模拟预测)已知复数z满足,则       

    A B3 C D

    【答案】D

    【解析】

    【分析】

    利用复数的除法运算求出,再利用共轭复数及模的意义求解作答.

    【详解】

    依题意,,则有,于是得

    所以.

    故选:D

     

    1.(2022·山东聊城·三模)若复数z满足,则复数的虚部为(       

    A B C D

    【答案】B

    【解析】

    【分析】

    ,利用共轭复数的定义、复数的加法以及复数相等可求得的方程,解出的值,即可得解.

    【详解】

    ,则

    因为,则,所以,,解得

    因此,复数的虚部为.

    故选:B.

    2.(2022·江苏·扬中市第二高级中学模拟预测)若为虚数单位,复数满足,则的最大值为_______.

    【答案】

    【解析】

    【分析】

    利用复数的几何意义知复数对应的点到点的距离满足表示复数对应的点到点的距离,数形结合可求得结果.

    【详解】

    复数满足,即

    即复数对应的点到点的距离满足

    表示复数对应的点到点的距离

    数形结合可知的最大值

    故答案为:

    3.(2022·上海·模拟预测)若i是虚数单位)是关于x的实系数方程的一个复数根,则_________

    【答案】##

    【解析】

    【分析】

    由题知与其共轭复数均为方程的根,进而由韦达定理即可得答案.

    【详解】

    实系数一元二次方程的一个虚根为

    其共轭复数也是方程的根.

    由根与系数的关系知,

    .

    故答案为:

    4.(2022·天津·静海一中模拟预测)已知复数满足(其中为虚数单位),则________

    【答案】

    【解析】

    【分析】

    根据复数的乘除运算法则,化简得,进而根据共轭复数得到,根据模长公式即可求解.

    【详解】

    ,所以,.

    故答案为:

    5.(2022·全国·模拟预测)请写出一个同时满足的复数zz=______

    【答案】

    【解析】

    【分析】

    ,根据模长公式得出,进而得出.

    【详解】

    ,由条件可以得到,两边平方化简可得,故

    故答案为:

    6.(2022·全国·模拟预测)若复数z满足,则       

    A B C D

    【答案】B

    【解析】

    【分析】

    先根据题意计算出复数,然后根据共轭复数的概念即可得到答案

    【详解】

    因为

    所以

    故选:B

    7.(2022·福建·三明一中模拟预测)已知是虚数单位,若,则的值是(       

    A B C D1

    【答案】D

    【解析】

    【分析】

    根据复数的运算法则,得到,结合复数相等的条件,求得的值,即可求解.

    【详解】

    由复数的运算法则,可得

    因为,即,所以.

    故选:D.

    8.(2022·河南省杞县高中模拟预测(理))已知复数z满足,则z的虚部为(       

    A B C D

    【答案】C

    【解析】

    【分析】

    根据复数的除法运算法则求解即可.

    【详解】

    由题意知

    所以z的虚部为

    故选C

    9.(2022·河南安阳·模拟预测(理))设,则满足的复数z的个数为(       

    A2 B3 C4 D5

    【答案】D

    【解析】

    【分析】

    根据复数的运算可得,,即可求出满足题意的解的个数.

    【详解】

    因为,所以,而,所以当时,;当时,;当时,,即满足的复数z的个数为5

    故选:D

    10.(2022·浙江绍兴·模拟预测)人们对数学研究的发展一直推动着数域的扩展,从正数到负数、从整数到分数、从有理数到实数等等.16世纪意大利数学家卡尔丹和邦贝利在解方程时,首先引进了17世纪法因数学家笛卡儿把i称为虚数,用表示复数,并在直角坐标系上建立了复平面.若复数z满足方程,则       

    A B C D

    【答案】C

    【解析】

    【分析】

    设出复数z的代数形式,再利用复数为0列出方程组求解作答.

    【详解】

    ,因,则

    ,而,则,解得

    所以.

    故选:C

    11.(2022·河南·开封市东信学校模拟预测(理))复数z满足,则复数       

    A B C D

    【答案】D

    【解析】

    【分析】

    先求出,再由复数运算求出即可.

    【详解】

    可得,则

    故选:D.

    12(多选题)2022·江苏南京·模拟预测)任何一个复数(其中为虚数单位)都可以表示成:的形式,通常称之为复数的三角形式.法国数学家棣莫弗发现:,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是(       

    A

    B.当时,

    C.当时,

    D.当时,若为偶数,则复数为纯虚数

    【答案】AC

    【解析】

    【分析】

    利用复数的三角形式与模长公式可判断A选项的正误;利用复数的棣莫弗定理可判断B选项的正误;计算出复数,可判断C选项的正误;计算出,可判断D选项的正误.

    【详解】

    对于A选项,,则,可得A选项正确;

    对于B选项,当时,B选项错误;

    对于C选项,当时,,则C选项正确;

    对于D选项,

    ,则为偶数,则不是纯虚数,D选项错误.

    故选:AC.

    【点睛】

    本题考查复数的乘方运算,考查了复数的模长、共轭复数的运算,考查计算能力,属于中等题.

    13.(2022·上海·位育中学模拟预测)如果复数满足 那么 的最大值是_____.

    【答案】5

    【解析】

    【分析】

    ,根据题干条件得到,化简得到,根据求出最大值.

    【详解】

    ,则

    变形为,两边平方后得到

    两边平方后得到,将代入

    ,故

    时,取得最大值,最大值为5

    故答案为:5

     

     

    12022·北京·高考真题)若复数z满足,则       

    A1 B5 C7 D25

    【答案】B

    【解析】

    【分析】

    利用复数四则运算,先求出,再计算复数的模.

    【详解】

    由题意有,故

    故选:B

    22022·浙江·高考真题)已知为虚数单位),则(       

    A B C D

    【答案】B

    【解析】

    【分析】

    利用复数相等的条件可求.

    【详解】

    ,而为实数,故

    故选:B.

    32022·全国·高考真题(理))若,则       

    A B C D

    【答案】C

    【解析】

    【分析】

    由共轭复数的概念及复数的运算即可得解.

    【详解】

    故选 C

    42022·全国·高考真题(理))已知,且,其中ab为实数,则(       

    A B C D

    【答案】A

    【解析】

    【分析】

    先算出,再代入计算,实部与虚部都为零解方程组即可

    【详解】

    ,,

    故选:

    52022·全国·高考真题(文))若.则       

    A B C D

    【答案】D

    【解析】

    【分析】

    根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.

    【详解】

    因为,所以,所以

    故选:D.

    62022·全国·高考真题(文))设,其中为实数,则(       

    A B C D

    【答案】A

    【解析】

    【分析】

    根据复数代数形式的运算法则以及复数相等的概念即可解出.

    【详解】

    因为R,所以,解得:

    故选:A.

    72021·全国·高考真题)复数在复平面内对应的点所在的象限为(       

    A.第一象限 B.第二象限 C.第三象限 D.第四象限

    【答案】A

    【解析】

    【分析】

    利用复数的除法可化简,从而可求对应的点的位置.

    【详解】

    ,所以该复数对应的点为

    该点在第一象限,

    故选:A.

    82021·北京·高考真题)在复平面内,复数满足,则       

    A B C D

    【答案】D

    【解析】

    【分析】

    由题意利用复数的运算法则整理计算即可求得最终结果.

    【详解】

    由题意可得:.

    故选:D.

    92021·全国·高考真题)已知,则       

    A B C D

    【答案】C

    【解析】

    【分析】

    利用复数的乘法和共轭复数的定义可求得结果.

    【详解】

    因为,故,故

    故选:C.

    102021·全国·高考真题(文))已知,则       

    A B C D

    【答案】B

    【解析】

    【分析】

    由已知得,根据复数除法运算法则,即可求解.

    【详解】

    .

    故选:B.

    112021·全国·高考真题(理))设,则       

    A B C D

    【答案】C

    【解析】

    【分析】

    ,利用共轭复数的定义以及复数的加减法可得出关于的等式,解出这两个未知数的值,即可得出复数.

    【详解】

    ,则,则

    所以,,解得,因此,.

    故选:C.

    122021·全国·高考真题(文))设,则       

    A B C D

    【答案】C

    【解析】

    【分析】

    由题意结合复数的运算法则即可求得z的值.

    【详解】

    由题意可得:.

    故选:C.

    132021·浙江·高考真题)已知(i为虚数单位),则       

    A B1 C D3

    【答案】C

    【解析】

    【分析】

    首先计算左侧的结果,然后结合复数相等的充分必要条件即可求得实数的值.

    【详解】

    利用复数相等的充分必要条件可得:.

    故选:C.

    142022·上海·高考真题)已知,则________

    【答案】

    【解析】

    【分析】

    直接根据共轭复数的概念得答案.

    【详解】

    故答案为:.

    152021·天津·高考真题)是虚数单位,复数_____________

    【答案】

    【解析】

    【分析】

    利用复数的除法化简可得结果.

    【详解】

    .

    故答案为:.

     


     

    相关试卷

    考向21 三角恒等变换(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版): 这是一份考向21 三角恒等变换(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版),共24页。

    考向11 对数与对数函数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版): 这是一份考向11 对数与对数函数(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版),共27页。

    考向07 函数的单调性与最值(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版): 这是一份考向07 函数的单调性与最值(重点)-备战2023年高考数学一轮复习考点微专题(新高考地区专用)(解析版),共30页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map