所属成套资源:【全套】中考数学13个专题 以几何图形中的动点最值问题为背景的选择填空题(解析版)
【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(原卷版)
展开
这是一份【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(原卷版),共12页。
【解题思路】折叠类题目的主要出题结合点有:与三角形结合,与平行四边形结合,与圆结合,与函数图像结合,题型多以选择题和填空题的形式出现,少数题目也会在大题中作为辅助背景。在解决这类问题时,要注意折叠出等角,折叠出等长,折叠出等腰三角形,折叠出全等与相似等。图形的旋转是中考题的新题型,热点题型,解题方法①熟练掌握图形的对称,图形的平移,图形的旋转的基本性质和基本作图法。②结合具体的问题大胆尝试,动手操作平移,旋转,探究发现其内在的规律。③注重对网格内和坐标内的图形的变换试题的研究,熟练掌握其常用的解题方法。④关注图形与变换创新题,弄清其本质,掌握基本解题方法,如动手操作法,折叠法,旋转法,旋转可以移动图形的位置而不改变图形的大小,是全等变换. 变换的目的是为了实现已知与结论中的相关元素的相对集中或分散重组,使表面上不能发生联系的元素联系起来.在转化的基础上为问题的解决铺设桥梁,沟通到路.一些难度较大的问题借助平移、对称、旋转的合成及相互关系可能会更容易一些.
【典型例题】
【例1】(2019·河北中考模拟)如图1,在▱ABCD中,DH⊥AB于点H,CD的垂直平分线交CD于点E,交AB于点F,AB=6,DH=4,BF:FA=1:5.
(1)如图2,作FG⊥AD于点G,交DH于点M,将△DGM沿DC方向平移,得到△CG′M′,连接M′B.
①求四边形BHMM′的面积;
②直线EF上有一动点N,求△DNM周长的最小值.
(2)如图3,延长CB交EF于点Q,过点Q作QK∥AB,过CD边上的动点P作PK∥EF,并与QK交于点K,将△PKQ沿直线PQ翻折,使点K的对应点K′恰好落在直线AB上,求线段CP的长.
【例2】(2019·湖南中考模拟)在矩形ABCD中,AB=12,P是边AB上一点,把△PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BE⊥CG,垂足为E且在AD上,BE交PC于点F.
(1)如图1,若点E是AD的中点,求证:△AEB≌△DEC;
(2)如图2,①求证:BP=BF;
②当AD=25,且AE<DE时,求cs∠PCB的值;
③当BP=9时,求BE•EF的值.
【例3】(2019·辽宁中考真题)思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP的延长线于点D,此时测得CD=200米,那么A,B间的距离是 米.
思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.
①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是 ;
②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;
③当α=150°时,若BC=3,DE=l,请直接写出PC2的值.
【方法归纳】实践操作性试题以成为中考命题的热点,很多省市的压轴的都是这类题型,解决这种类型的题目可从以下方面切入:
1.构造定理所需的图形或基本图形.在解决问题的过程中,有时添辅助线是必不可少的。中考对学生添线的要求不是很高,只需连接两点或作垂直、平行,而且添辅助线几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形.
2. 切入点二:做不出、找相似,有相似,用相似.压轴题牵涉到的知识点较多,知识转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去寻找相似三角形。
3. 紧扣不变量,并善于使用前题所采用的方法或结论.在图形运动变化时,图形的位置、大小、方向可能都有所改变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生改变。
4. 展开联想,寻找解决过的问题. 在题目中你总可以找到与你解决过的问题有相类似的情况,可能图形相似,可能条件相似,可能结论相似,此时你就应考虑原来题目是怎样解决的,与现题目有何不同。原有的题目是如何解决的,所使用的方法或结论在这里是不是可以使用,或有借鉴之处。
5. 在题目中寻找多解的信息图形在运动变化,可能满足条件的情形不止一种,也就是通常所说的两解或多解.
【针对练习】
1.(2019·山东中考真题)(1)问题发现
如图1,△ACB和△DCE均为等腰直角三角形,∠ACB=90°,B,C,D在一条直线上.
填空:线段AD,BE之间的关系为 .
(2)拓展探究
如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,请判断AD,BE的关系,并说明理由.
(3)解决问题
如图3,线段PA=3,点B是线段PA外一点,PB=5,连接AB,将AB绕点A逆时针旋转90°得到线段AC,随着点B的位置的变化,直接写出PC的范围.
2.(2019·山东中考真题)如图1,菱形的顶点,在直线上,,以点为旋转中心将菱形顺时针旋转,得到菱形,交对角线于点,交直线于点,连接.
(1)当时,求的大小.
(2)如图2,对角线交于点,交直线与点,延长交于点,连接.当的周长为2时,求菱形的周长.
3.(2019·辽宁中考真题)如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α得,连接CF,O为CF的中点,连接OE,OD.
(1)如图1,当时,请直接写出OE与OD的关系(不用证明).
(2)如图2,当时,(1)中的结论是否成立?请说明理由.
(3)当时,若,请直接写出点O经过的路径长.
4.(2019·辽宁中考真题)如图1,在中,,,点M是AB的中点,连接MC,点P是线段BC延长线上一点,且,连接MP交AC于点H.将射线MP绕点M逆时针旋转交线段CA的延长线于点D.
(1)找出与相等的角,并说明理由.
(2)如图2,,求的值.
(3)在(2)的条件下,若,求线段AB的长.
5.(2019·贵州中考真题)将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADC的比是否为定值.
(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)
(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)
(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)
6.(2019·天津中考真题)在平面直角坐标系中,O为原点,点A(6,0),点B在y轴的正半轴上,.矩形CODE的顶点D,E,C分别在OA,AB,OB上,OD=2..
(Ⅰ)如图①,求点E的坐标;
(Ⅱ)将矩形CODE沿x轴向右平移,得到矩形,点C,O,D,E的对应点分别为.设,矩形与重叠部分的面积为S.
①如图②,当矩形与重叠部分为五边形时,,分别与AB相交于点M,F,试用含有t的式子表示S,并直接写出t的取值范围;
②当时,求t的取值范围(直接写出结果即可).
7.(2019·江苏中考真题)如图,已知等边△ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条直线,把△ABC沿直线l折叠,点B的对应点是点B’.
(1)如图1,当PB=4时,若点B’恰好在AC边上,则AB’的长度为_____;
(2)如图2,当PB=5时,若直线l//AC,则BB’的长度为 ;
(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,△ACB’的面积是否变化?若变化,说明理由;若不变化,求出面积;
(4)当PB=6时,在直线l变化过程中,求△ACB’面积的最大值.
8.(2019·浙江中考真题)如图,在等腰中,.点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90º得到EF.
(1)如图1,若,点E与点C重合,AF与DC相交于点O.求证:.
(2)已知点G为AF的中点.
①如图2,若,求DG的长.
②若,是否存在点E,使得是直角三角形?若存在,求CE的长;若不存在,试说明理由.
9.(2019·山东中考模拟)请认真阅读下面的数学小探究系列,完成所提出的问题:
探究1:如图1,在等腰直角三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接求证:的面积为提示:过点D作BC边上的高DE,可证≌
探究2:如图2,在一般的中,,,将边AB绕点B顺时针旋转得到线段BD,连接请用含a的式子表示的面积,并说明理由.
探究3:如图3,在等腰三角形ABC中,,,将边AB绕点B顺时针旋转得到线段BD,连接试探究用含a的式子表示的面积,要有探究过程.
10.(2019·湖南中考真题)(1)如图1,在平行四边形ABCD中,∠A=30°,AB=6,AD=8,将平行四边形ABCD分割成两部分,然后拼成一个矩形,请画出拼成的矩形,并说明矩形的长和宽.(保留分割线的痕迹)
(2)若将一边长为1的正方形按如图2﹣1所示剪开,恰好能拼成如图2﹣2所示的矩形,则m的值是多少?
(3)四边形ABCD是一个长为7,宽为5的矩形(面积为35),若把它按如图3﹣1所示的方式剪开,分成四部分,重新拼成如图3﹣2所示的图形,得到一个长为9,宽为4的矩形(面积为36).问:重新拼成的图形的面积为什么会增加?请说明理由.
11.(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB=4,BC=6.若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动.
(1)当∠OAD=30°时,求点C的坐标;
(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;
(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cs∠OAD的值.
12.(2019·四川中考真题)如图1,在正方形中,平分,交于点,过点作,交的延长线于点,交的延长线于点.
(1)求证:;
(2)如图2,连接、,求证:平分;
(3)如图3,连接交于点,求的值.
13.(2019·江西中考真题)在图1,2,3中,已知▱ABCD,∠ABC=120°,点E为线段BC上的动点,连接AE,以AE为边向上作菱形AEFG,且∠EAG=120°.
(1)如图1,当点E与点B重合时,∠CEF=________°;
(2)如图2,连接AF.
①填空:∠FAD_________∠EAB(填“>”,“
相关试卷
这是一份中考数学二轮专题过关练习第7关 以几何图形中的图形操作与变换问题为背景的解答题(教师版),共68页。
这是一份【全套】中考数学专题第7关 以几何图形中的图形操作与变换问题为背景的解答题(解析版),共67页。
这是一份【全套】中考数学专题第2关 以几何图形中的图形操作与变换问题为背景的选择填空题(原卷版),共9页。