年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版)

    【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版)第1页
    【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版)第2页
    【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版)第3页
    还剩8页未读, 继续阅读
    下载需要5学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版)

    展开

    这是一份【全套】中考数学专题第9关 以二次函数与直角三角形问题为背景的解答题(原卷版),共11页。
    【解题思路】
    近几年的中考中,二次函数图形中存在性问题始终是热点和难点。考题内容涉及到分类讨论、数形结合、化归等数学思想,对学生思维能力、模型思想等数学素养要求很高,所以学生的失分现象比较普遍和突出。解这类问题有什么规律可循?所应用的知识点:1.抛物线与直线交点坐标;2.抛物线与直线的解析式;3.勾股定理;4.三角形的相似的性质和判定;5.两直线垂直的条件;运用的数学思想:1.函数与方程;2.数形结合;3.分类讨论;4.等价转化;解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.
    【典型例题】
    【例1】(2019·邢台市第八中学中考模拟)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.
    (1)若直线经过、两点,求直线和抛物线的解析式;
    (2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;
    (3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.
    【例2】(2020·山东初三期末)已知,抛物线y=﹣x2+bx+c经过点A(﹣1,0)和C(0,3).
    (1)求抛物线的解析式;
    (2)在抛物线的对称轴上,是否存在点P,使PA+PC的值最小?如果存在,请求出点P的坐标,如果不存在,请说明理由;
    (3)设点M在抛物线的对称轴上,当△MAC是直角三角形时,求点M的坐标.
    【例3】(2019·山东中考模拟)如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
    (1)求抛物线的解析式;
    (2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
    ①求点P的坐标;
    ②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
    【方法归纳】解决二次函数中直角三角形存在性问题采用方法:1. 找点:在已知两定点,确定第三点构成直角三角形时,要么以两定点为直角顶点,要么以动点为直角顶点.以定点为直角顶点时,构造两条直线与已知直线垂直;以动点为直角顶点时,以已知线段为直径构造圆找点;2. 以两定点为直角顶点时,两直线互相垂直,则k1*k2=-1,以已知线段为斜边时,利用K型图,构造双垂直模型,最后利用相似求解,或者三条边分别表示之后,利用勾股定理求解.
    【针对练习】
    1.(2019·四川中考真题)如图,在平面直角坐标系中,抛物线(a≠0)与y轴交与点C(0,3),与x轴交于A、B两点,点B坐标为(4,0),抛物线的对称轴方程为x=1.
    (1)求抛物线的解析式;
    (2)点M从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点N从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动,设△MBN的面积为S,点M运动时间为t,试求S与t的函数关系,并求S的最大值;
    (3)在点M运动过程中,是否存在某一时刻t,使△MBN为直角三角形?若存在,求出t值;若不存在,请说明理由.
    2.(2019·四川中考真题)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
    (1)求抛物线的解析式;
    (2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
    (3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
    3.(2018·吉林中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
    (1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;
    (2)OE的长是否与a值有关,说明你的理由;
    (3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
    (4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
    4.(2019·湖南中考真题)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.
    (1)求抛物线的解析式和直线AC的解析式;
    (2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;
    (3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
    5.(2019·湖南中考真题)如图,在直角坐标系中有,为坐标原点,,将此三角形绕原点顺时针旋转,得到,二次函数的图象刚好经过三点.
    (1)求二次函数的解析式及顶点的坐标;
    (2)过定点的直线与二次函数图象相交于两点.
    ①若,求的值;
    ②证明:无论为何值,恒为直角三角形;
    ③当直线绕着定点旋转时,外接圆圆心在一条抛物线上运动,直接写出该抛物线的表达式.
    6.(2019·山东中考真题)如图1,抛物线经过平行四边形的顶点、、,抛物线与轴的另一交点为.经过点的直线将平行四边形分割为面积相等的两部分,与抛物线交于另一点.点为直线上方抛物线上一动点,设点的横坐标为.
    (1)求抛物线的解析式;
    (2)当何值时,的面积最大?并求最大值的立方根;
    (3)是否存在点使为直角三角形?若存在,求出的值;若不存在,说明理由.
    7.(2018·辽宁中考真题)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.
    (1)求抛物线C1的表达式;
    (2)直接用含t的代数式表示线段MN的长;
    (3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;
    (4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.
    8.(2018·广西中考真题)如图,抛物线y=ax2﹣5ax+c与坐标轴分别交于点A,C,E三点,其中A(﹣3,0),C(0,4),点B在x轴上,AC=BC,过点B作BD⊥x轴交抛物线于点D,点M,N分别是线段CO,BC上的动点,且CM=BN,连接MN,AM,AN.
    (1)求抛物线的解析式及点D的坐标;
    (2)当△CMN是直角三角形时,求点M的坐标;
    (3)试求出AM+AN的最小值.
    9.(2018·四川中考真题)如图,已知二次函数y=ax2+bx+3 的图象与x轴分别交于A(1,0),B(3,0)两点,与y轴交于点C
    (1)求此二次函数解析式;
    (2)点D为抛物线的顶点,试判断△BCD的形状,并说明理由;
    (3)将直线BC向上平移t(t>0)个单位,平移后的直线与抛物线交于M,N两点(点M在y轴的右侧),当△AMN为直角三角形时,求t的值.
    10.(2018·黑龙江中考真题)如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).
    (1)求抛物线的解析式;
    (2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;
    (3)点D为抛物线对称轴上一点.
    ①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;
    ②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.
    11.(2018·湖南中考真题)如图所示,将二次函数y=x2+2x+1的图象沿x轴翻折,然后向右平移1个单位,再向上平移4个单位,得到二次函数y=ax2+bx+c的图象.函数y=x2+2x+1的图象的顶点为点A.函数y=ax2+bx+c的图象的顶点为点B,和x轴的交点为点C,D(点D位于点C的左侧).
    (1)求函数y=ax2+bx+c的解析式;
    (2)从点A,C,D三个点中任取两个点和点B构造三角形,求构造的三角形是等腰三角形的概率;
    (3)若点M是线段BC上的动点,点N是△ABC三边上的动点,是否存在以AM为斜边的Rt△AMN,使△AMN的面积为△ABC面积的?若存在,求tan∠MAN的值;若不存在,请说明理由.
    12.(2016·甘肃中考真题)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴交于点A,与y轴交于点B.已知抛物线y=﹣x2+bx+c经过A(3,0),B(0,3)两点.
    (1)求此抛物线的解析式和直线AB的解析式;
    (2)如图①,动点E从O点出发,沿着OA方向以1个单位/秒的速度向终点A匀速运动,同时,动点F从A点出发,沿着AB方向以2个单位/秒的速度向终点B匀速运动,当E,F中任意一点到达终点时另一点也随之停止运动,连接EF,设运动时间为t秒,当t为何值时,△AEF为直角三角形?
    (3)如图②,取一根橡皮筋,两端点分别固定在A,B处,用铅笔拉着这根橡皮筋使笔尖P在直线AB上方的抛物线上移动,动点P与A,B两点构成无数个三角形,在这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时点P的坐标;如果不存在,请简要说明理由.
    13.(2017·广西中考真题)如图,抛物线与轴交于两点,与轴的正半轴交于点,其顶点为.
    (1)写出两点的坐标(用含的式子表示);
    (2)设,求的值;
    (3)当是直角三角形时,求对应抛物线的解析式.
    14.(2020·广州大学附属中学初三月考)在平面直角坐标系中,抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.
    (1)请直接写出点A,C,D的坐标;
    (2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;
    (3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.
    15.(2020·安徽初三期末)如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上.
    (1)求抛物线的解析式;
    (2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
    (3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标.
    16.(2020·四川绵阳实中、绵阳七中初三月考)如图,顶点为的二次函数图象与x轴交于点,点B在该图象上,交其对称轴l于点M,点M、N关于点P对称,连接、.
    (1)求该二次函数的关系式.
    (2)若点B在对称轴l右侧的二次函数图象上运动,请解答下列问题:
    ①连接,当时,请判断的形状,并求出此时点B的坐标.
    ②求证:.
    17.(2020·广东初三期末)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是.
    (1)求这条直线的函数关系式及点B的坐标.
    (2)在x轴上是否存在点C,使得△ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由.
    (3)过线段AB上一点P,作PM∥x轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?

    相关试卷

    【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版):

    这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(原卷版),共12页。

    【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(解析版):

    这是一份【全套】中考数学专题第13关 以二次函数与圆的问题为背景的解答题(解析版),共55页。

    【全套】中考数学专题第12关 以二次函数与特殊四边形问题为背景的解答题(原卷版):

    这是一份【全套】中考数学专题第12关 以二次函数与特殊四边形问题为背景的解答题(原卷版),共12页。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map