19-20 主题2 3 简谐运动的回复力和能量
展开3 简谐运动的回复力和能量
学 习 目 标 | 知 识 脉 络 |
1.理解简谐运动的运动规律,掌握在一次全振动过程中位移、回复力、加速度、速度变化的规律.(重、难点) 2.掌握简谐运动回复力的特征.(重点) 3.对水平的弹簧振子,能定性地说明弹性势能与动能的转化过程. |
知识点一| 简谐运动的回复力
1.回复力
(1)定义:振动质点受到的总能使其回到平衡位置的力.
(2)方向:指向平衡位置.
(3)表达式:F=-kx.
2.简谐运动的动力学特征
如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动.
1.回复力的方向总是与位移的方向相反. (√)
2.回复力的方向总是与速度的方向相反. (×)
3.回复力的方向总是与加速度的方向相反. (×)
1.公式F=-kx中的k是否就是指弹簧的劲度系数?
【提示】 不一定.做简谐运动的物体,其回复力特点为F=-kx,这是判断物体是否做简谐运动的依据,但k不一定是弹簧的劲度系数.
2.弹簧振子从平衡位置到达最大位移处的过程中,回复力如何变化?从最大位移处向平衡位置运动的过程中呢?
【提示】 由回复力F=-kx可知:从平衡位置到达最大位移处的过程中,回复力逐渐增大,方向一直指向平衡位置.从最大位移处向平衡位置运动的过程中,回复力逐渐减小,方向一直指向平衡位置.
1.回复力的性质
回复力是根据力的效果命名的,它可以是一个力,也可以是多个力的合力,还可以由某个力的分力提供.如图甲所示,水平方向的弹簧振子,弹力充当回复力;如图乙所示,竖直方向的弹簧振子,弹力和重力的合力充当回复力;如图丙所示,m随M一起振动,m的回复力是静摩擦力.
2.简谐运动的回复力的特点
(1)由F=-kx知,简谐运动的回复力大小与振子的位移大小成正比,回复力的方向与位移的方向相反,即回复力的方向总是指向平衡位置.
(2)公式F=-kx中的k指的是回复力与位移的比例系数,而不一定是弹簧的劲度系数,系数k由振动系统自身决定.
(3)根据牛顿第二定律得,a==-x,表明弹簧振子做简谐运动时振子的加速度大小也与位移大小成正比,加速度方向与位移方向相反.
1.弹簧振子在光滑水平面上做简谐运动,在振子向平衡位置运动的过程中( )
A.振子所受的回复力逐渐增大
B.振子的位移逐渐减小
C.振子的速度逐渐减小
D.振子的加速度逐渐减小
E.弹簧的形变量逐渐减小
解析:该题考查的是回复力、加速度、速度随位移的变化关系,应根据牛顿第二定律进行分析.当振子向平衡位置运动时,位移逐渐减小,而回复力与位移成正比,故回复力也减小.由牛顿第二定律a=得加速度也减小.物体向着平衡位置运动时,回复力与速度方向一致,即加速度与速度方向一致,故物体的速度逐渐增大.故正确答案为B、D、E.
答案:BDE
2.如图所示,分析做简谐运动的弹簧振子m的受力情况.
解析:弹簧振子的简谐运动中忽略了摩擦力,回复力为效果力,受力分析时不分析此力,故振子只受重力、支持力及弹簧给它的弹力.
答案:受重力、支持力及弹簧给它的弹力.
3.一质量为m的小球,通过一根轻质弹簧悬挂在天花板上,如图所示.
(1)小球在振动过程中的回复力实际上是________;
(2)该小球的振动是否为简谐运动?
解析:(1)此振动过程的回复力实际上是弹簧的弹力与重力的合力.(2)设振子的平衡位置为O,向下方向为正方向,此时弹簧已经有了一个伸长量h,设弹簧的劲度系数为k,由平衡条件得kh=mg ①
当振子向下偏离平衡位置的距离为x时,回复力即合外力为F回=mg-k(x+h) ②
将①代入②式得:F回=-kx,可见小球所受合外力与它的位移的关系符合简谐运动的受力特点,该振动系统的振动是简谐运动.
答案:(1)弹力和重力的合力 (2)是简谐运动
判断是否为简谐运动的方法
(1)以平衡位置为原点,沿运动方向建立直线坐标系.
(2)在振动过程中任选一个位置(平衡位置除外),对振动物体进行受力分析.
(3)将力在振动方向上分解,求出振动方向上的合力.
(4)判定振动方向上合外力(或加速度)与位移关系是否符合F=-kx(或a=-x),若符合,则为简谐运动,否则不是简谐运动.
知识点二| 简谐运动的能量
1.振动系统(弹簧振子)的状态与能量的对应关系
弹簧振子运动的过程就是动能和势能互相转化的过程.
(1)在最大位移处,势能最大,动能为零.
(2)在平衡位置处,动能最大,势能最小.
2.简谐运动的能量特点:在简谐运动中,振动系统的机械能守恒,而在实际运动中都有一定的能量损耗,因此简谐运动是一种理想化的模型.
1.简谐运动是一种理想化的振动. (√)
2.水平弹簧振子运动到平衡位置时,回复力为零,因此能量一定为零.
(×)
3.弹簧振子位移最大时,势能也最大. (√)
1.振子经过同一位置时,位移、回复力、加速度、速率、动能各物理量的关系如何?
【提示】 振子经过同一位置时,位移、回复力、加速度、速率、动能一定相同,但速度不一定相同,方向可能相反.
2.振子经过关于平衡位置O对称的两点P、P′时各物理量的关系如何?
【提示】 位移、回复力、加速度大小相等,方向相反,动能、势能相等,速度大小相等,方向可能相同也可能相反,且振子往复通过一段路程(如OP)所用时间相等,即tOP=tPO.
简谐运动的特点
如图所示的弹簧振子.
振子的运动 | 位移 | 加速度 | 速度 | 动能 | 势能 |
O→B | 增大,方向向右 | 增大,方向向左 | 减小,方向向右 | 减小 | 增大 |
B | 最大 | 最大 | 0 | 0 | 最大 |
B→O | 减小,方向向右 | 减小,方向向左 | 增大,方向向左 | 增大 | 减小 |
O | 0 | 0 | 最大 | 最大 | 0 |
O→C | 增大,方向向左 | 增大,方向向右 | 减小,方向向左 | 减小 | 增大 |
C | 最大 | 最大 | 0 | 0 | 最大 |
C→O | 减小,方向向左 | 减小,方向向右 | 增大,方向向右 | 增大 | 减小 |
(1)在简谐运动中,位移、回复力、加速度和势能四个物理量同时增大或减小,与速度和动能的变化步调相反.
(2)平衡位置是位移、加速度和回复力方向变化的转折点.
(3)最大位移处是速度方向变化的转折点.
(4)简谐运动的位移与前面学过的位移不同,简谐运动的位移是从平衡位置指向某一位置的有向线段,位移起点是平衡位置,是矢量.
4.把一个小球套在光滑细杆上,球与轻弹簧相连组成弹簧振子,小球沿杆在水平方向做简谐运动,它围绕平衡位置O在A、B间振动,如图所示,下列结论正确的是( )
A.小球在O位置时,动能最大,加速度最小
B.小球在A、B位置时,动能最小,加速度最大
C.小球从A经O到B的过程中,回复力一直做正功
D.小球从B到O的过程中,振子振动的能量不断增加
E.小球从B到O的过程中,动能增大,势能减小,总能量不变
解析:小球在平衡位置O时,弹簧处于原长,弹性势能为零,动能最大,位移为零,加速度为零,A项正确;在最大位移A、B处,动能为零,加速度最大,B项正确;由A→O,回复力做正功,由O→B,回复力做负功,C项错误;由B→O,动能增加,弹性势能减少,总能量不变,D项错误.E项正确.
答案:ABE
5.弹簧振子做简谐运动,其位移x与时间t的关系如图所示,则( )
A.在t=1 s时,速度的值最大,方向为负,加速度为零
B.在t=2 s时,速度的值最大,方向为负,加速度为零
C.在t=3 s时,速度的值最大,方向为正,加速度最大
D.在t=4 s时,速度的值最大,方向为正,加速度为零
E.当t=5 s时,速度为零,加速度最大,方向为负
解析:当t=1 s和t=5 s时,位移最大,加速度最大,速度为零,选项A错误,E正确;当t=2 s时,位移为零,加速度为零,而速度最大,速度方向要看该点切线斜率的正负,t=2 s时,速度为负值,选项B正确;当t=3 s时,位移最大,加速度最大,速度为零,选项C错误;当t=4 s时,位移为零,加速度为零,速度最大,方向为正,选项D正确.
答案:BDE
6.如图所示为一弹簧振子的振动图象,在A,B,C,D,E,F各时刻中:
(1)哪些时刻振子有最大动能?
(2)哪些时刻振子有相同速度?
(3)哪些时刻振子有最大势能?
(4)哪些时刻振子有相同的最大加速度?
解析:由题图知,B,D,F时刻振子在平衡位置,具有最大动能,此时振子的速率最大;A,C,E时刻振子在最大位移处,具有最大势能,此时振子的速度为0.B,F时刻振子向负方向运动,D时刻振子向正方向运动,可知D时刻与B,F时刻虽然速率相同,但方向相反.A,E两时刻振子的位移相同,C时刻振子的位移虽然大小与A,E两时刻相同,但方向相反.由回复力知识可知C时刻与A,E时刻振子受力大小相等,但方向相反,故加速度大小相等,方向相反.
答案:(1)B,D,F时刻振子有最大动能. (2)A,C,E时刻振子速度相同,B,F时刻振子速度相同.
(3)A,C,E时刻振子有最大势能. (4)A,E时刻振子有相同的最大加速度.
对简谐运动能量的三点认识
(1)决定因素:对于一个确定的振动系统,简谐运动的能量由振幅决定,振幅越大,系统的能量越大.
(2)能量获得:系统开始振动的能量是通过外力做功由其他形式的能转化来的.
(3)能量转化:当振动系统自由振动后,如果不考虑阻力作用,系统只发生动能和势能的相互转化,机械能守恒.