|试卷下载
终身会员
搜索
    上传资料 赚现金
    高中数学高考专题25 立体几何中综合问题(解析版)
    立即下载
    加入资料篮
    高中数学高考专题25 立体几何中综合问题(解析版)01
    高中数学高考专题25 立体几何中综合问题(解析版)02
    高中数学高考专题25 立体几何中综合问题(解析版)03
    还剩6页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    高中数学高考专题25 立体几何中综合问题(解析版)

    展开
    这是一份高中数学高考专题25 立体几何中综合问题(解析版),共9页。试卷主要包含了棱锥与球的切接问题,棱柱与球的切接问题,研究球的截面问题等内容,欢迎下载使用。

    【解决之道】(1)三条侧棱互相垂直的三棱锥的外接球:①如果三棱锥的三条侧棱互相垂直并且相等,那么可以补形为一个正方体,正方体的外接球的球心就是三棱锥的外接球的球心;②如果三棱锥的三条侧棱互相垂直但不相等,那么可以补形为一个长方体,长方体的外接球的球心就是三棱锥的外接球的球心.
    (2)一条侧棱垂直于底面的棱锥的外接球问题,可以将其补成以棱锥的底面为底面、垂直与底面的侧棱为高的直棱柱,则补成直棱柱的外接球即为该三棱锥的外接球.
    (3)正棱锥(圆锥)的外接球问题,已知正棱锥的底面的外接圆半径为、高为,外接球的半径为,则.
    (4)已知三棱锥中某两个面所成二面角为的外接球问题,关键是作出球心,即分别过两个半平面的截面圆的圆心作截面圆的垂线,垂线的交点即为球心,再利用球的截面性质,即可求出求的半径.
    (5)对两个直角三角形共斜边的三棱锥的外接球问题,则直角三角形的斜边为球的直径.
    (6)对对棱相等的三棱锥的外接球问题,将其看成在长方体中面的对角线,则长方体的外接球即该三棱锥的外接球.
    (7)求一个棱锥内切球的半径,可以根据球心到各个面的距离相等以及棱锥的体积列式得出.也可以先找准切点,通过作截面来解决,作截面时主要抓住棱锥过球心的对角面来作.
    【三年高考】
    1.【2020年高考全国Ⅰ卷理数10】已知为球的球面上的三个点,⊙为的外接圆.若⊙的面积为,,则球的表面积为( )
    A. B. C. D.
    【答案】A
    【解析】设圆半径为,球的半径为,依题意,得,由正弦定理可得,,根据圆截面性质平面,
    ,球的表面积,故选A.
    2.【2020年高考全国Ⅱ卷文数11理数10】已知是面积为的等边三角形,且其顶点都在球的表面上,若球的表面积为,则球到平面的距离为 ( )
    A.B.C.D.
    【答案】C
    【解析】设球的半径为,则,解得:.设外接圆半径为,边长为,是面积为的等边三角形,,解得:,,球心到平面的距离,故选C.
    3.【2019年高考全国Ⅰ卷理数】已知三棱锥P−ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为( )
    A.B.
    C.D.
    【答案】D
    【解析】解法一:为边长为2的等边三角形,为正三棱锥,
    ,又,分别为,的中点,,,又,平面,∴平面,,为正方体的一部分,,即,故选D.
    解法二:设,分别为的中点,,且,为边长为2的等边三角形,,
    又,,
    中,由余弦定理可得,
    作于,
    ,为的中点,,,
    ,,
    又,两两垂直,
    ,,,故选D.
    4.【2018年高考全国Ⅲ卷理数】设是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为( )
    A.B.
    C.D.
    【答案】B
    【解析】如图所示,设点M为三角形ABC的重心,E为AC中点,
    当点在平面上的射影为时,三棱锥的体积最大,此时,,
    ,,点M为三角形ABC的重心,,
    中,有,,
    ,故选B.
    命题规律二 棱柱(圆柱)与球的切接问题
    【解决之道】(1)长、宽、高分别为a,b,c的长方体的体对角线长等于其外接球的直径,即eq \r(a2+b2+c2)=2R.
    (2)直棱柱(圆柱)的外接球:已知直棱柱的底面半径为,高为,则其外接球半径为
    【三年高考】
    1.【2020年高考天津卷5】若棱长为的正方体的顶点都在同一球面上,则该球的表面积为( )
    A.B.C.D.
    【答案】C
    【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即
    ,所以这个球的表面积为,故选C.
    命题规律三 研究球的截面问题
    【解决之道】解决此类问题的关键为作出截面,作截面的关键在作截线,方法如下:①若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的的一个面的截线;②若面上只有一个已知点,应设法在同一平面内找出第2个确定的点;③若两个已知点分别在相邻的面上,应找出这两个平面的交线与截面的交点;④两个平行平面的一个平面与截面有绞线,另一个平面上只有一个已知点,则按面面平行得截面与平面的交线;⑤若有一点在面上而不在棱上,则可通过作辅助平面化为棱上的点的问题;⑥若已知点在体内,可通过作辅助平面化为面上的点的,再化为棱上的点的问题来解决.
    【三年高考】
    1.【2020年高考山东卷16】已知直四棱柱的棱长均为,,以为球心,为半径的球面与侧面的交线长为 .
    【答案】
    【解析】解法一:如图,
    取的中点为,的中点为,的中点为,
    因为60°,直四棱柱的棱长均为2,所以△为等边三角形,所以,,
    又四棱柱为直四棱柱,所以平面,所以,
    因为,所以侧面,
    设为侧面与球面的交线上的点,则,
    因为球的半径为,,所以,
    所以侧面与球面的交线上的点到的距离为,因为,所以侧面与球面的交线是扇形的弧,因为,所以,所以根据弧长公式可得,故答案为:.
    解法二:在直四棱柱中,取中点为,中点为,中点为,由题意易知,又,则面,在面内取一点,使,且,∴,又,,∴以为球心,为半径的球面与侧面的交线是以为圆心,以为半径的圆弧,由题意易得,故该交线长为.
    解法三:
    命题规律四 以传统文化为载体考查几何体的性质
    【解决之道】解决此类问题,首项要认真读题,挖掘出所蕴含的几何体及其有关量,转化为数学问题,然后利用几何体的有关知识求解.
    【三年高考】
    1.【2019年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)
    【答案】26,
    【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有个面.
    如图,设该半正多面体的棱长为,则,延长与的延长线交于点,延长交正方体的棱于,由半正多面体对称性可知,为等腰直角三角形,


    即该半正多面体的棱长为.
    .
    命题规律五 以几何体中空间角为条件研究几何体的截面问题
    【解决之道】解决此类问题的关键为作出截面,作截面的关键在作截线,方法如下:①若已知两点在同一平面内,只要连接这两点,就可以得到截面与多面体的的一个面的截线;②若面上只有一个已知点,应设法在同一平面内找出第2个确定的点;③若两个已知点分别在相邻的面上,应找出这两个平面的交线与截面的交点;④两个平行平面的一个平面与截面有绞线,另一个平面上只有一个已知点,则按面面平行得截面与平面的交线;⑤若有一点在面上而不在棱上,则可通过作辅助平面化为棱上的点的问题;⑥若已知点在体内,可通过作辅助平面化为面上的点的,再化为棱上的点的问题来解决.
    【三年高考】
    1.【2018年高考全国Ⅰ卷理数】已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( )
    A. B.
    C. D.
    【答案】A
    【解析】根据相互平行的直线与平面所成的角是相等的,所以在正方体中,
    平面与线所成的角是相等的,所以平面与正方体的每条棱所在的直线所成角都是相等的,同理,平面也满足与正方体的每条棱所在的直线所成角都是相等的,要求截面面积最大,则截面的位置为夹在两个面与中间,且过棱的中点的正六边形,且边长为,所以其面积为,故选A.
    命题规律
    内 容
    典 型

    棱锥与球的切接问题
    2020年高考全国Ⅰ卷理数10

    棱柱(圆柱)与球的切接问题
    2020年高考天津卷5

    研究球的截面问题
    2020高考山东卷

    以传统文化为载体考查几何体的性质
    2019年高考全国Ⅱ卷理数

    以几何体中空间角为条件研究几何体的截面问题
    2018年高考全国Ⅰ卷理数
    相关试卷

    高中数学高考复习 第12讲立体几何中球的综合问题 练习: 这是一份高中数学高考复习 第12讲立体几何中球的综合问题 练习,共18页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    高中数学高考第6节 立体几何中的综合问题 课件: 这是一份高中数学高考第6节 立体几何中的综合问题 课件,共36页。PPT课件主要包含了点击右图进入等内容,欢迎下载使用。

    高中数学高考专题25 立体几何中综合问题(原卷版): 这是一份高中数学高考专题25 立体几何中综合问题(原卷版),共3页。试卷主要包含了棱锥与球的切接问题,棱柱与球的切接问题,研究球的截面问题等内容,欢迎下载使用。

    • 精品推荐
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map