高中数学高考专题34 极坐标系与参数方程(解析版)
展开
这是一份高中数学高考专题34 极坐标系与参数方程(解析版),共19页。试卷主要包含了,与坐标轴交于两点,由于M点在上,等内容,欢迎下载使用。
大数据分析*预测高考
十年试题分类*探求规律
考点116 平面直角坐标系中的伸缩变换
考点117 极坐标和直角坐标的互化
1.(2020全国Ⅱ文理21)已知曲线的参数方程分别为(为参数),(为参数).
(1)将的参数方程化为普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系.设的交点为,求圆心在极轴上,且经过极点和的圆的极坐标方程.
【解析】(1)由得的普通方程为:,
由得:,两式作差可得的普通方程为:.
(2)由得:,即.
设所求圆圆心的直角坐标为,其中,则,解得:,
所求圆的半径,所求圆的直角坐标方程为:,即,
所求圆的极坐标方程为.
2.(2020全国Ⅲ文理22)在直角坐标系中,曲线的参数方程为(为参数且),与坐标轴交于两点.
(1)求;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,求直线的极坐标方程.
【解析】(1)令,则,解得或(舍),则,即.
令,则,解得或(舍),则,即.
.
(2)由(1)可知,则直线的方程为,即.
由可得,直线的极坐标方程为.
3.(2020江苏22)在极坐标系中,已知点在直线上,点在圆上(其中,).
(1)求,的值
(2)求出直线与圆的公共点的极坐标.
【解析】(1).
(2),
当时;当时(舍);即所求交点坐标为当.
4.(2019全国II文理22)在极坐标系中,O为极点,点在曲线上,直线l过点且与垂直,垂足为P.
(1)当时,求及l的极坐标方程;
(2)当M在C上运动且P在线段OM上时,求P点轨迹的极坐标方程.
【解析】(1)因为在C上,当时,.
由已知得.
设为l上除P的任意一点.在中,
经检验,点在曲线上.
所以,l的极坐标方程为.
(2)设,在中, 即..
因为P在线段OM上,且,故的取值范围是.
所以,P点轨迹的极坐标方程为 .
5.(2019全国III文理22)如图,在极坐标系Ox中,,,,,弧,,所在圆的圆心分别是,,,曲线是弧,曲线是弧,曲线是弧.
(1)分别写出,,的极坐标方程;
(2)曲线由,,构成,若点在M上,且,求P的极坐标.
【解析】(1)由题设可得,弧所在圆的极坐标方程分别为,,,所以的极坐标方程为,的极坐标方程为,的极坐标方程为.
(2)设,由题设及(1)知
若,则,解得;
若,则,解得或;
若,则,解得.
综上,P的极坐标为或或或.
考点118 参数方程与普通方程的互化
6.(2020上海14)已知直线方程的一个参数方程可以是( )
A. B. C. D.
【答案】D
【解析】A.参数方程可化简为,故A不正确;B.参数方程可化简为,故B不正确;C.参数方程可化简为,故C不正确;D.参数方程可化简为,故D正确.故选D.
7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)
在平面直角坐标系中,的参数方程为,(为参数),过点且倾斜角为的直线与交于,两点.
(1)求的取值范围;
(2)求中点的轨迹的参数方程.
【解析】(1)的直角坐标方程为.
当时,与交于两点.
当时,记,则的方程为.与交于两点当且仅当,解得或,即或.
综上,的取值范围是.
(2)的参数方程为为参数,.
设,,对应的参数分别为,,,则,且,满足.
于是,.又点的坐标满足
所以点的轨迹的参数方程是为参数,.
考点119 极坐标方程与参数方程的综合应用
8.(2018北京文理)在极坐标系中,直线与圆相切,则=___.
【答案】【解析】利用,,可得直线的方程为,圆的方程为,所以圆心,半径,由于直线与圆相切,故圆心到直线的距离等于半径,即,∴或,又,∴.
9.(2017北京文理)在极坐标系中,点A在圆上,点P的坐标为),则的最小值为___________.
【答案】1【解析】圆的普通方程为,即.
设圆心为,所以.
10.(2017天津文理)在极坐标系中,直线与圆的公共点的个数为_____.
【答案】2【解析】直线的普通方程为,圆的普通方程为,因为圆心到直线的距离 ,所以有两个交点.
11.(2016北京文理)在极坐标系中,直线与圆交于两点,则 .
【答案】2【解析】将化为直角坐标方程为,将ρ=2cs θ化为直角坐标方程为,圆心坐标为(1,0),半径r=1,又(1,0)在直线上,所以|AB|=2r=2.
12.(2015广东文理)已知直线的极坐标方程为,点的极坐标为
,则点到直线的距离为 .
【答案】【解析】由得,所以,
故直线的直角坐标方程为,而点对应的直角坐标为
,所以点到直线:的距离为.
13.(2015安徽文理)在极坐标系中,圆上的点到直线距离的最大值
是 .
【答案】6【解析】圆即,化为直角坐标方程为,
直线,则,化为直角坐标方程为,圆心到直线
的距离为,所以圆上的点到直线距离的最大值为6.
14.(2020全国Ⅰ文理21)
在直角坐标系中,曲线的参数方程为为参数.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)当时,是什么曲线?
(2)当时,求与的公共点的直角坐标.
【解析】(1)当时,曲线的参数方程为(为参数),两式平方相加得,
∴曲线表示以坐标原点为圆心,半径为1的圆.
(2)当时,曲线的参数方程为(为参数),∴,曲线的参数方程化为为参数),两式相加得曲线方程为,得,平方得,
曲线的极坐标方程为,曲线直角坐标方程为,
联立方程,整理得,解得或(舍去),,公共点的直角坐标为.
15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.
(1)求C和l的直角坐标方程;
(2)求C上的点到l距离的最小值.
【解析】(1)因为,且,所以C的直角坐标方程为.
的直角坐标方程为.
(2)由(1)可设C的参数方程为(为参数,).
C上的点到的距离为.
当时,取得最小值7,故C上的点到距离的最小值为.
16.(2018全国Ⅰ文理) 在直角坐标系中,曲线的方程为.以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求的直角坐标方程;
(2)若与有且仅有三个公共点,求的方程.
【解析】(1)由,得的直角坐标方程为.
(2)由(1)知是圆心为,半径为的圆.
由题设知,是过点且关于轴对称的两条射线.记轴右边的射线为,轴左边的射线为.由于在圆的外面,故与有且仅有三个公共点等价于与只有一个公共点且与有两个公共点,或与只有一个公共点且与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与只有一个公共点,与有两个公共点.
当与只有一个公共点时,到所在直线的距离为,所以,故或.
经检验,当时,与没有公共点;当时,与没有公共点.
综上,所求的方程为.
17.(2018全国Ⅱ文理)在直角坐标系中,曲线的参数方程为(为参数),直线的参数方程为(为参数).
(1)求和的直角坐标方程;
(2)若曲线截直线所得线段的中点坐标为,求的斜率.
【解析】(1)曲线的直角坐标方程为.
当时,的直角坐标方程为;
当时,的直角坐标方程为.
(2)将的参数方程代入的直角坐标方程,整理得关于的方程
.①
因为曲线截直线所得线段的中点在内,所以①有两个解,设为,,则.
又由①得,故,于是直线的斜率.
18.(2018江苏)在极坐标系中,直线的方程为,曲线的方程为,求直线被曲线截得的弦长.
【解析】因为曲线的极坐标方程为,所以曲线的圆心为,直径为4的圆.
因为直线的极坐标方程为,则直线过,倾斜角为,所以A为直线与圆的一个交点.
设另一个交点为B,则∠OAB=,连结OB,因为OA为直径,从而∠OBA=,所以.
因此,直线被曲线截得的弦长为.
19.(2017全国Ⅰ文理)在直角坐标系中,曲线的参数方程为,(为参数),直线的参数方程为 QUOTE x=a+4t,y=1-t, (为参数).
(1)若,求与的交点坐标;
(2)若上的点到距离的最大值为,求.
【解析】(1)曲线的普通方程为.
当时,直线的普通方程为.
由解得或,从而与的交点坐标为,.
(2)直线的普通方程为,故上的点到的距离为
.
当时,的最大值为.由题设得,所以;
当时,的最大值为.由题设得,所以.
综上,或.
20.(2017全国Ⅱ文理)在直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线 的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
【解析】(1)设的极坐标为,的极坐标为.
由椭圆知,.由得的极坐标方程,因此的直角坐标方程为.
(2)设点的极坐标为.由题设知,,于是面积
.
当时,取得最大值,所以面积的最大值为.
21.(2017全国Ⅲ文理)在直角坐标系中,直线的参数方程为 (为参数),直线的参数方程为(为参数).设与的交点为,当变化时,的轨迹为曲线.
(1)写出的普通方程;
(2)以坐标原点为极点,轴正半轴为极轴建立极坐标系,设:,为与的交点,求的极径.
【解析】(1)消去参数得的普通方程,消去参数得的普通方程.
设,由题设得,消去得,所以的普通方程为.
(2)的极坐标方程为,联立得,故,从而,代入得,所以交点的极径为.
22.(2017江苏)在平面坐标系中中,已知直线的参考方程为(为参数),曲线的参数方程为(为参数).设为曲线上的动点,求点到直线的距离的最小值.
【解析】直线的普通方程为.
因为点在曲线上,设,从而点到直线的的距离,当时,.
因此当点的坐标为时,曲线上点到直线的距离取到最小值.
23.(2016全国I文理)在直角坐标系中,曲线的参数方程为 QUOTE x=acst,y=1+asint, (t为参数,a>0).在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.
(I)说明是哪种曲线,并将的方程化为极坐标方程;
(II)直线的极坐标方程为,其中满足,若曲线与的公共点都在 上,求a.
【解析】(1)(均为参数),∴①
∴为以为圆心,为半径的圆.方程为.
∵,∴,即为的极坐标方程.
(2),两边同乘得,,
即②
:化为普通方程为,由题意:和的公共方程所在直线即为,
①—②得:,即为,∴,∴.
24.(2016全国II文理)在直角坐标系中,圆C的方程为.
(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;
(II)直线l的参数方程是(t为参数),l与C交于A、B两点,,求l的斜率.
【解析】(Ⅰ)整理圆的方程得,由可知圆的极坐标方程为.
(Ⅱ)记直线的斜率为,则直线的方程为,由垂径定理及点到直线距离公式知:,即,整理得,则.
25.(2016全国III文理)在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为.
(Ⅰ)写出的普通方程和的直角坐标方程;
(Ⅱ)设点P在上,点Q在上,求的最小值及此时P的直角坐标.
【解析】(Ⅰ)的普通方程为,的直角坐标方程为.
(Ⅱ)由题意,可设点的直角坐标为,因为是直线,所以 的最小值,即为到的距离的最小值,.
当且仅当时,取得最小值,最小值为,此时的直角坐标为.
26.(2016江苏)在平面直角坐标系中,已知直线的参数方程为,椭圆的参数方程为,设直线与椭圆相交于两点,求线段的长.
【解析】椭圆的普通方程为,将直线的参数方程,代入,得,即,解得,,所以.
27.(2015全国Ⅰ文理)在直角坐标系中,直线:,圆:,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.
(Ⅰ)求,的极坐标方程;
(Ⅱ)若直线的极坐标方程为,设与的交点为,,求的面积.
【解析】(Ⅰ)因为,
∴的极坐标方程为,的极坐标方程为.
(Ⅱ)将代入,得,解得=,=,|MN|=-=,因为的半径为1,则的面积=.
28.(2015全国Ⅱ文理)在直角坐标系中,曲线:(为参数,≠0)其中,在以O为极点,x轴正半轴为极轴的极坐标系中,曲线:,:.
(Ⅰ)求与交点的直角坐标;
(Ⅱ)若与相交于点A,与相交于点B,求的最大值.
【解析】(Ⅰ)曲线的直角坐标方程为,曲线的直角坐标方程为.联立解得或
所以与交点的直角坐标为和.
(Ⅱ)曲线的极坐标方程为,其中.
因此得到极坐标为,的极坐标为.
所以,当时,取得最大值,最大值为.
29.(2015江苏)已知圆C的极坐标方程为,求圆C的半径.
【解析】 以极坐标系的极点为平面直角坐标系的原点,以极轴为轴的正半轴,建立直角坐标系.
圆的极坐标方程为,化简,得.
则圆的直角坐标方程为,即,所以圆的半径为.
30.(2015陕西文理)在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴正半轴为极轴建立极坐标系,⊙的极坐标方程为.
(Ⅰ)写出⊙的直角坐标方程;
(Ⅱ)为直线上一动点,当到圆心的距离最小时,求的直角坐标.
【解析】(Ⅰ)由,从而有.
(Ⅱ)设,则,
故当=0时,||取最小值,此时点的直角坐标为.
31.(2014全国Ⅰ文理)已知曲线:,直线:(为参数).
(Ⅰ)写出曲线的参数方程,直线的普通方程;
(Ⅱ)过曲线上任一点作与夹角为的直线,交于点,求的最大值与最小值.
【解析】
……5分
(Ⅱ)
32.(2014全国Ⅱ文理)在直角坐标系中,以坐标原点为极点,轴正半轴为极轴建立极坐标系,半圆C的极坐标方程为,.
(Ⅰ)求C的参数方程;
(Ⅱ)设点D在C上,C在D处的切线与直线垂直,根据(Ⅰ)中你得到的参数方程,确定D的坐标.
【解析】(I)C的普通方程为,可得C的参数方程为(t为参数,).
(Ⅱ)设D.由(I)知C是以G(1,0)为圆心,1为半径的上半圆.
因为C在点D处的切线与t垂直,所以直线GD与t的斜率相同,.
故D的直角坐标为,即.
33.(2013全国Ⅰ文理)已知曲线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)把的参数方程化为极坐标方程;
(Ⅱ)求与交点的极坐标(,).
【解析】将消去参数,化为普通方程,
即:,将代入得,,∴的极坐标方程为.
(Ⅱ)的普通方程为,由解得或,
∴与的交点的极坐标分别为(),.
34.(2013全国Ⅱ文理)已知动点,都在曲线: 上,对应参数分别为与()为的中点.
(Ⅰ)求的轨迹的参数方程
(Ⅱ)将到坐标原点的距离表示为的函数,并判断的轨迹是否过坐标原点.
【解析】(Ⅰ)由题意有因此,
的轨迹的参数方程为().
(Ⅱ)点到坐标原点的距离(),
当时,,故的轨迹过坐标原点.
35.(2012全国文理)已知曲线的参数方程是(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程是.正方形的顶点都在上,且、、、依逆时针次序排列,点的极坐标为.
(Ⅰ)求点、、、的直角坐标;
(Ⅱ)设为上任意一点,求的取值范围.
【解析】(1)点的极坐标为,
点的直角坐标为.
(2)设;则,
.
36.(2011全国文理)在直角坐标系 中,曲线的参数方程为(为参数),M是上的动点,点满足,点的轨迹为曲线
(Ⅰ)求的方程
(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与的异于极点的交点为A,与的异于极点的交点为B,求.
【解析】(I)设,则由条件知M().由于M点在上,
所以,即,从而的参数方程为(为参数),
(Ⅱ)曲线的极坐标方程为,曲线的极坐标方程为.
射线与的交点的极径为,射线与的交点的极径为.
所以.年 份
题号
考 点
考 查 内 容
2011
文理23
极坐标系与参数方程
直线和圆的参数方程,极坐标方程的应用[来源:学*科*网]
2012
文理23
极坐标系与参数方程
极坐标与直角坐标的互化,椭圆参数方程的应用
2013
卷1
文理23
极坐标系与参数方程
参数方程与极坐标方程的互化,极坐标方程的应用
卷2
文理23
极坐标系与参数方程
参数方程的求法,参数方程的应用
2014
卷1
文理23
极坐标系与参数方程
直线和椭圆的参数方程及其应用
卷2
文理23
极坐标系与参数方程
圆的极坐标方程与参数方程的互化,圆的参数方程的应用
2015
卷1
文理23
极坐标系与参数方程
直角坐标方程与极坐标互化;直线与圆极坐标方程的应用
卷2
文理23
极坐标系与参数方程
极坐标方程与参数方程的互化,极坐标方程的应用
2016
卷1
文理23
极坐标系与参数方程
极坐标方程与参数方程的互化,极坐标方程的应用
卷2
文理23
极坐标系与参数方程
圆的极坐标方程与普通方程互化,直线的参数方程,圆的弦长公式
卷3
文理23
极坐标系与参数方程
椭圆的参数方程,直线的极坐标方程,参数方程的应用
2017
卷1
文理22
极坐标系与参数方程
直角坐标方程与极坐标方程的互化,参数方程与普通方程的互化,椭圆参数方程的应用
卷2
文理22
极坐标系与参数方程
直角坐标方程与极坐标方程的互化,极坐标方程的应用
卷3
文理22
极坐标系与参数方程
参数方程与普通方程的互化,极坐标方程的应用
2018
卷1
文理22
极坐标系与参数方程
极坐标与直角坐标方程互化,直线与圆的位置关系,圆的几何性质
卷2
文理22
极坐标系与参数方程
直线和椭圆的参数方程,直线参数方程参数几何意义的应用
卷3
文理22
极坐标系与参数方程
直线与圆的位置关系,圆的参数方程,点的轨迹方程求法
2019
卷1
文理22
极坐标系与参数方程
参数方程与普通方程的互化,极坐标方程与直角坐标方程的互化,参数方程的应用
卷2
文理22
极坐标系与参数方程
直线和圆的极坐标方程及其应用
卷3
文理22
极坐标系与参数方程
极坐标方程及其应用
2020
卷1
文理22
极坐标系与参数方程
参数方程与普通方程互化,极坐标方程与直角坐标方程互化
卷2
文理22
极坐标系与参数方程
参数方程化普通方程,直角坐标方程化极坐标方程,极坐标与参数方程的综合应用
卷3
文理22
极坐标系与参数方程
极坐标方程与直角坐标方程的互化,参数方程及其应用
考 点
出现频率
2021年预测
考点116平面直角坐标系中的伸缩变换
23次考0次
2021年高考在试题难度、知识点考查等方面,不会有太大的变化,主要考查极坐标方程和直角坐标方程的互化、及常见曲线的极坐标方程与极坐标方程的简单应用.
考点117极坐标和直角坐标的互化
23次考5次
考点118参数方程与普通方程的互化
23次考1次
考点119极坐标方程与参数方程的综合应用
23次考17次
相关试卷
这是一份2011-2020年高考数学真题分专题训练 专题34 极坐标系与参数方程(教师版含解析),共18页。试卷主要包含了[选修 4—4等内容,欢迎下载使用。
这是一份高中数学高考专题34 极坐标系与参数方程(原卷版),共12页。试卷主要包含了,与坐标轴交于两点等内容,欢迎下载使用。
这是一份高中数学高考专题12 坐标系与参数方程(解析版),共11页。