中考数学二轮压轴培优专题 二次函数与交点综合问题(2份打包,教师版+原卷版)
展开1.如图,已知二次函数y=x2+2x+c与x轴正半轴交于点B(另一个交点为A),与y轴负半轴交于点C,且OC=3OB.
(1)求抛物线的解析式;
(2)设直线AC的解析式为y=kx+b,求点A的坐标,并结合图象写出不等式x2+2x+c≥kx+b的解集;
(3)已知点P(﹣3,1),Q(2,2t+1),且线段PQ与抛物线y=x2+2x+c有且只有一个公共点,直接写出t的取值范围.
2.如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a,动点P、Q同时从原点O出发,沿射线OB分别以每秒eq \r(5)和2eq \r(5)个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.
(1)求a的值及t=1秒时点P的坐标;
(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;
(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.
3.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).
(1)当a=﹣eq \f(1,8)时,求抛物线的对称轴及顶点坐标;
(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是 .
(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;
(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.
4.已知二次函数y=a(x﹣1)(x﹣1﹣a)(a为常数,且a≠0).
(1)求证:该函数的图象与x轴总有两个公共点;
(2)若点(0,y1),(3,y2)在函数图象上,比较y1与y2的大小;
(3)当0<x<3时,y<2,直接写出a的取值范围.
5.已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣2,1),B(2,﹣3)两点
(1)求分别以A(﹣2,1),B(2,﹣3)两点为顶点的二次函数表达式;
(2)求b的值,判断此二次函数图象与x轴的交点情况,并说明理由;
(3)设(m,0)是该函数图象与x轴的一个公共点.当﹣3<m<﹣1时,结合函数图象,写出a的取值范围.
6.在平面直角坐标系中,A,B两点的坐标分别是(0,﹣3),(0,4),点P(m,0)(m≠0)是x轴上一个动点,过点A作直线AC⊥BP于点D,直线AC与x轴交于点C,过点P作PE∥y轴,交AC于点E.
(1)当点P在x轴的正半轴上运动时,是否存在点P,使△OCD与△OBD相似?若存在,请求出m的值;若不存在,请说明理由.
(2)小明通过研究发现:当点P在x轴上运动时,点E(x,y)也相应的在二次函数y=ax2+bx+c(a≠0)的图象上运动,为了确定函数解析式小明选取了一些点P的特殊的位置,计算了点E(x,y)的坐标,列表如下:
请填写表中空格,并根据表中数据求出二次函数的函数解析式;
(3)把(2)中所求的抛物线向左平移n个单位长度,把直线y=﹣2x﹣4向下平移n个单位长度,如果平移后的抛物线对称轴右边部分与平移后的直线有公共点,那么请直接写出n的取值范围.
7.在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.
(1)当m=﹣2,求图象G的最高点坐标;
(2)若图象G过点(3,﹣9),求出m的取值范围;
(3)若矩形ABCD为正方形时,求点A坐标;
(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.
8.定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.
(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为 ,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为 ;
(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;
(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.
9.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,在△ABC中,A(0,1),B(﹣1,0),C(1,0).
(1)求d(点D,△ABC)= ;当k=1时,求d(L,△ABC)= ;
(2)若d(L,△ABC)=0,直接写出k的取值范围 ;
(3)函数y=x+b的图象记为W,若d(W,△ABC)≤2,则b的取值范围是 .
10.若一个函数图象上存在横纵坐标互为相反数的点,我们将其称之为“反值点”,例如直线y=x+2的图象上的(﹣1,1)即为反值点.
(1)判断反比例函数y=eq \f(9,x)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;
(2)判断关于x的函数(a是常数)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;
(3)将二次函数y=x2﹣2x﹣3的图象向上平移m(m为常数,且m>0)个单位后,若在其图象上存在两个反值点,求m的取值范围.
x
﹣2eq \r(3)
0
2eq \r(3)
y
0
﹣3
0
中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数的计算与证明综合问题教师版doc、中考数学二轮压轴培优专题二次函数的计算与证明综合问题原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
中考数学二轮压轴培优专题 二次函数与旋转变换综合问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数与旋转变换综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与旋转变换综合问题教师版doc、中考数学二轮压轴培优专题二次函数与旋转变换综合问题原卷版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版): 这是一份中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与新定义综合问题教师版doc、中考数学二轮压轴培优专题二次函数与新定义综合问题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。