高中数学人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表优秀课时作业
展开1.下列关于独立性检验的说法中,错误的是( )
A.独立性检验依据小概率原理 B.独立性检验原理得到的结论一定正确
C.样本不同,独立性检验的结论可能有差异 D.独立性检验不是判定两类事物是否相关的唯一方法
2.在研究打鼾与患心脏病之间的关系中,通过收集数据、整理分析数据得到“打鼾与患心脏病有关”的结论,并且在犯错误的概率不超过0.01的前提下认为这个结论是成立的.下列说法中正确的是( )
A.100个心脏病患者中至少有99人打鼾 B.1个人患心脏病,则这个人有99%的概率打鼾
C.100个心脏病患者中一定有打鼾的人 D.100个心脏病患者中可能一个打鼾的人都没有
3.某校为了解学生“玩手机游戏”和“学习成绩”是否有关,随机抽取了100名学生,运用2×2列联表进行独立性检验,经计算得到χ2=3.936,所以判定玩手机游戏与学习成绩有关系,那么这种判断出错的可能性为( )
A. 1%B. 5%C. 95% D. 99%
4.为了解某大学的学生是否爱好体育锻炼,用简单随机抽样方法在校园内调查了120位学生,得到如下2×2列联表:
则a-b-c等于( )
A. 7 B. 8 C. 9 D. 10
5.针对“中学生追星问题”,某校团委对“学生性别和中学生追星是否有关”进行了一次调查,调查样本中女生人数是男生人数的12,男生追星的人数占男生人数的16, 女生追星的人数占女生人数的23,若有95%的把握认为是否追星和性别有关,则调查样本中男生至少有( )
A. 12人 B. 11人 C. 10人 D. 18人
6.下列说法正确的是( )
A.两个变量的相关关系一定是线性相关
B.两个随机变量的线性相关性越强,则相关系数的绝对值就越接近于0
C.在线性回归方程Y=0.2X+0.8中,当解释变量X每增加1个单位时,预报变量Y平均增加1个单位
D.对分类变量X与Y,随机变量χ2的观测值χ越大,则判断“X与Y有关系”的把握程度越大
7.两个分类变量X和Y,值域分别为{x1,x2}和{y1,y2},其样本频数分别是a=10,b=21,c+d=35.若X与Y有关系的可信程度不小于95%,则c等于( )
A.3 B.7 C.5 D.6
8.[多选题]某校对“学生性别和喜欢锻炼是否有关”作了一次调查,其中被调查的男女生人数相同,男生喜欢锻炼的人数占男生总人数的45,女生喜欢锻炼的人数占女生总人数的35.若至少有95%的把握认为“学生性别和喜欢锻炼有关”,则被调查学生中男生的人数可能为( )
A. 35B. 40C. 45D. 50
9.两个分类变量X,Y,它们的取值分别为{x1,x2}和{y1,y2},其列联表为:
若两个分类变量X,Y没有关系,则下列结论正确的是________(填序号).
①ad≈bc;②eq \f(a,a+b)≈eq \f(c,c+d);③a+b≈c+d;④a+c≈b+d;⑤eq \f(a+b+c+dad-bc2,a+bb+da+cc+d)≈0.
10.某词汇研究机构为对某城市人们使用流行用语的情况进行调查,随机抽取了200人进行调查统计得下方的2×2列联表.则根据列联表可知:
有 的把握认为“经常用流行用语”与“年轻人”有关系.
11.足不出户,手机下单,送菜到家,轻松逛起手机“菜市场”,拎起手机“菜篮子”,省心又省力.某手机App(应用程序)公司为了了解这款App使用者的人数及满意度,对一大型小区居民开展5个月的调查活动,得到对这款App不满意度的人数统计数据如下:
(1)请利用所给数据求不满意人数Y与月份X之间的回归直线方程Y=bX+ a,并预测该小区10月份对这款App不满意的人数;
(2)工作人员发现使用这款App居民的年龄X近似服从正态分布N(35,42),求P(27< x≤47)的值;
(3)工作人员从这5个月内的调查表中随机抽查100人,调查是否使用这款App与性别的关系,得到下表:
你能否据此判断有99%的把握认为是否使用这款App与性别有关?
参考公式:b= i=1nxiyi−nxyi=1nxi2−nx2= i=1nxi−xyi−yi=1nxi−x2,a=y- bx.
附:随机变量:ξ~N(μ,σ2),则P(μ−σ<ξ≤μ+σ)≈0.682 6,P(μ−2σ<ξ≤μ+2σ)≈0.9544,P(μ−3σ<ξ≤μ+3σ)≈0.997 4,χ2=nad−bc2a+bc+da+cb+d(其中n=a+b+c+d).
P(χ2≥χ0)
0.50
0.40
0.25
0.15
0.10
χ0
0.455
0.708
1.323
2.072
2.706
P(χ2≥χ0)
0.05
0.025
0.01
0.005
0.001
χ0
3.841
5.024
6.635
7.879
10.828
男
女
总计
爱好
a
b
73
不爱好
c
25
总计
74
P(χ2≥χ0)
0.050
0.010
0.001
χ0
3.841
6.635
10.828
P(χ2≥χ0)
0.15
0.10
0.05
0.025
0.010
χ0
2.072
2.706
3.841
5.024
6.635
Y
X
y1
y3
总计
x1
a
b
a+b
x2
c
d
c+d
总计
a+c
b+d
a+b+c+d
年轻人
非年轻人
总计
经常用流行用语
125
25
150
不常用流行用语
35
15
50
总计
160
40
200
月份
1
2
3
4
5
不满意的人数
120
105
100
95
80
使用App
不使用App
合计
女性
48
12
60
男性
22
18
40
合计
70
30
100
P(χ2≥χ0)
0.15
0.10
0.05
0.025
0.010
χ0
2.072
2.706
3.841
5.024
6.635
课时把关练
8.3 列联表与独立性检验
参考答案
1.B 2.D 3.B 4.C 5.A 6.D 7.A 8.CD
9.①②⑤ 10. 95%
11.解:(1)由表中的数据可知,x=1+2+3+4+55=3,y=120+105+100+95+805=100,
所以b=i=15xiyi−5x yi=15xi2−5x2=1 410−1 50055−45=-9,故a=y-bx=100-(-9)×3=127,
所以所求的回归直线方程为Y=-9X+127.
令X=10,则Y=-9×10+127=37(人),
所以预测10月份该小区对这款App不满意的人数为37.
(2)依题意得P(27
(3)由表中的数据计算可得:
χ2=100×48×18−22×12260×40×70×30=507≈7.143>6.635,
根据临界值可得,有99%的把握认为是否使用这款App与性别有关.
人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表精练: 这是一份人教A版 (2019)选择性必修 第三册8.3 分类变量与列联表精练,共5页。试卷主要包含了多空题下面是一个2×2列联表,由a+15=b,得b=50等内容,欢迎下载使用。
课时跟踪检测(二十) 列联表与独立性检验: 这是一份课时跟踪检测(二十) 列联表与独立性检验,共7页。试卷主要包含了下列变量中不属于分类变量的是,若两个分类变量X与Y的列联表为等内容,欢迎下载使用。
高中人教A版 (2019)第八章 成对数据的统计分析8.3 分类变量与列联表课后复习题: 这是一份高中人教A版 (2019)第八章 成对数据的统计分析8.3 分类变量与列联表课后复习题,共10页。试卷主要包含了3 列联表与独立性检验,013,,841<4等内容,欢迎下载使用。