中考经典几何模型与最值问题 专题20 瓜豆原理中动点轨迹不确定型最值问题试卷
展开中考经典几何模型与最值问题
每年中考高考,数学都是很受关注的一门学科。每次数学中考结束,相当一部分学生的心情都不轻松。比如今年的广东省数学中考,由于题目很难,据说学霸在考场上都忍不住抽泣。学是一门强调思维、技能和方法的学科。学生好数学,刷题真的是必不可少的,但如果盲目刷题,有可能达不到效果。如果有效刷题,有效学生,有一点很重要,那就是搜集经典题目,汇总经典题型,尤其是对一些经典的数学模型,多解题或者易错题,不妨专门用一个本子搜集一下,整理一下,考前复习一下,效果会很不错。
今天整理一下初三中考总复习阶段在教学过程中收集的一些经典题目,今天分享经典最值问题专题,供大家学习复习参考。
经典题目1:这是一道非常经典的最值问题,题干看似很简单,其中包含了两个经典的数学最值模型将军饮马和一箭穿心。对于利用一穿心求圆外一点到圆上的最大值和最小值问题,弄懂这道题就够了。
经典题目2:上面三道题是费马点经典问题,关于费马点,弄懂这三道题也就差不多了。旋转转化是费马点问题的关键,其核心思想是化折为直,掌握关键技巧,掌握核心思想,才能解决一类数学题目。
经典题目3:阿氏圆经典题目,这道题目实际包括了隐圆模型,一箭穿心模型等常见几何模型,核心思想依旧是化值为直,构造子母相似三角形实现线段的转化。
经典题目4:这是中考出现频率比较高的胡不归问题,也是经典最值问题,这是一个有历史故事的最值问题。构造锐角三角函数实现线段的转化,利用垂线段最短解决问题。
经典题目5:这道题目也是一道比较好的题目,题目类型可总结为“瓜豆原理”和“一箭穿心”,也是常见的最值问题之一。
经典题目6:以这道题目来结尾,这是初一年级经典最短路径问题,也是一道非常好的最值问题,是其他最值问题的基础版本。更多好题分享,请稍候。
专题8 瓜豆原理中动点轨迹不确定型最值问题
【专题说明】
动点轨迹非圆或直线时,基本上将此线段转化为一个三角形中, (1)利用三角形两边之和大于第三边,两边之差小于第三边求最值。 (2)在转化较难进行时,可借助直角三角形斜边上的中线及中位线或构建全等图形进一步转化求最值。 |
【知识精讲】
所谓“瓜豆原理”,就是主动点的轨迹与从动点的轨迹是相似性,根据主、从动点与定点连线形成的夹角以及主、从动点到定点的距离之比,可确定从动点的轨迹,而当主动点轨迹是其他图形时,从动点轨迹必然也是.
【例题】如图,在反比例函数的图像上有一个动点A,连接AO并延长交图像的另一支于点B,在第一象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数的图像上运动,若tan∠CAB=2,则k的值为( )
A.2 B.4 C.6 D.8
【模型】一、借助直角三角形斜边上的中线
1、如图,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是( )
A.6 B. C. D.
【模型】二、借助三角形两边之和大于第三边,两边之差小于第三边
1、如图,已知等边三角形ABC边长为2,两顶点A、B分别在平面直角坐标系的x轴负半轴、轴的正半轴上滑动,点C在第四象限,连接OC,则线段OC长的最小值是( )
A.1 B.3 C.3 D.
2、如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM、ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=4,BC=2.运动过程中点D到点O的最大距离是______.
3、如图,在中,,,,以线段为边向外作等边,点是线段的中点,连结并延长交线段于点.
(1)求证:四边形为平行四边形;
(2)求平行四边形的面积;
(3)如图,分别作射线,,如图中的两个顶点,分别在射线,上滑动,在这个变化的过程中,求出线段的最大长度.
4、如图,在中,,将绕顶点逆时针旋转得到是的中点,是的中点,连接,若,则线段的最大值为( )
A. B. C. D.
【模型】三、借助构建全等图形
1、如图,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点P是AC上的动点,连接BP,以BP为边作等边△BPQ,连接CQ,则点P在运动过程中,线段CQ长度的最小值是______.
2、如图,边长为12的等边三角形ABC中,M是高CH所在直线上的一个动点,连结MB,将线段BM绕点B逆时针旋转60°得到BN,连结HN.则在点M运动过程中,线段HN长度的最小值是( )
A.6 B.3 C.2 D.1.5
【模型】四、借助中位线
1、如图,在等腰直角ABC 中,斜边 AB 的长度为 8,以 AC 为直径作圆,点P 为半圆上的动点,连接 BP ,取 BP 的中点 M ,则CM 的最小值为( )
A. B. C. D.
2、如图,抛物线与轴交于两点,是以点为圆心,为半径的圆上的动点,是线段的中点,连接,则线段的最小值是( )
A. B. C. D.