2008年广东省深圳市中考数学试卷
展开1.(3分)4的平方根是( )
A.±2B.2C.﹣2D.16
2.(3分)下列运算正确的是( )
A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a5
3.(3分)2008年北京奥运会全球共选拔21 880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为( )
A.22×103B.2.2×105C.2.2×104D.0.22×105
4.(3分)如图,圆柱的左视图是( )
A.B.
C.D.
5.(3分)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
6.(3分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( )
A.众数是80B.中位数是75C.平均数是80D.极差是15
7.(3分)今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100 000元股票,则比调整前少交证券交易印花税多少元( )
A.200元B.2000元C.100元D.1000元
8.(3分)下列命题中错误的是( )
A.平行四边形的对边相等
B.两组对边分别相等的四边形是平行四边形
C.矩形的对角线相等
D.对角线相等的四边形是矩形
9.(3分)把二次函数y=﹣x2的图象先向右平移1个单位,再向上平移2个单位后得到一个新图象,则新图象所表示的二次函数的解析式是( )
A.y=﹣(x﹣1)2+2B.y=﹣(x+1)2+2
C.y=﹣(x﹣1)2﹣2D.y=﹣(x+1)2﹣2
10.(3分)如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于( )
A.B.C.D.
二、填空题(共5小题,每小题3分,满分15分)
11.(3分)有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是 .
12.(3分)分解因式:ax2﹣4a= .
13.(3分)如图,直线OA与反比例函数y=(k≠0)的图象在第一象限交于A点,AB⊥x轴于点B,△OAB的面积为2,则k= .
14.(3分)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 .
15.(3分)观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为 .
表一:
表二:
表三:
三、解答题(共7小题,满分55分)
16.(6分)计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.
17.(7分)先化简代数式÷,然后选取一个合适的a值,代入求值.
18.(7分)如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
(1)求证:梯形ABCD是等腰梯形;
(2)若∠BDC=30°,AD=5,求CD的长.
19.(8分)某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图中信息解答下列问题:
(1)哪一种品牌粽子的销售量最大?
(2)补全条形统计图;
(3)写出A品牌粽子在图中所对应的圆心角的度数;
(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.
20.(8分)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cs∠BFA=,求△ACF的面积.
21.(9分)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
22.(10分)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
2008年广东省深圳市中考数学试卷
参考答案与试题解析
一、选择题(共10小题,每小题3分,满分30分)
1.(3分)4的平方根是( )
A.±2B.2C.﹣2D.16
【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的一个平方根.
【解答】解:∵(±2 )2=4,
∴4的平方根是±2.
故选:A.
【点评】本题主要考查平方根的定义,解题时利用平方根的定义即可解决问题.
2.(3分)下列运算正确的是( )
A.a2+a3=a5B.a2•a3=a5C.(a2)3=a5D.a10÷a2=a5
【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项计算后利用排除法求解.
【解答】解:A、a2与a3不是同类项,不能合并,故本选项错误;
B、a2•a3=a5,正确;
C、应为(a2)3=a2×3=a6,故本选项错误;
D、应为a10÷a2=a10﹣2=a8,故本选项错误.
故选:B.
【点评】本题考查了合并同类项,同底数幂的乘法,幂的乘方,同底数幂的除法,熟练掌握运算性质是解题的关键,合并同类项时,不是同类项的一定不能合并.
3.(3分)2008年北京奥运会全球共选拔21 880名火炬手,创历史记录.将这个数据精确到千位,用科学记数法表示为( )
A.22×103B.2.2×105C.2.2×104D.0.22×105
【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
确定a×10n(1≤|a|<10,n为整数)中n的值是易错点,由于21 880有5位,所以可以确定n=5﹣1=4.
【解答】解:将21 880这个数据精确到千位,用科学记数法表示为2.2×104.
故选:C.
【点评】把一个数M记成a×10n(1≤|a|<10,n为整数)的形式,这种记数的方法叫做科学记数法.
规律:(1)当|a|≥1时,n的值为a的整数位数减1;
(2)当|a|<1时,n的值是第一个不是0的数字前0的个数,包括整数位上的0.
注意本题精确到千位,
4.(3分)如图,圆柱的左视图是( )
A.B.
C.D.
【分析】找到从左面看所得到的图形即可.
【解答】解:从左边看时,圆柱是一个圆,
故选:C.
【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.
5.(3分)下列图形中,既是中心对称图形又是轴对称图形的是( )
A.B.C.D.
【分析】根据轴对称图形与中心对称图形的概念求解.
【解答】解:A、是中心对称图形,不是轴对称图形,故本选项错误;
B、不是中心对称图形,是轴对称图形,故本选项错误;
C、不是中心对称图形,是轴对称图形,故本选项错误;
D、既是中心对称图形又是轴对称图形,故本选项正确.
故选:D.
【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.
6.(3分)某班抽取6名同学参加体能测试,成绩如下:80,90,75,75,80,80.下列表述错误的是( )
A.众数是80B.中位数是75C.平均数是80D.极差是15
【分析】根据平均数,中位数,众数,极差的概念逐项分析.
【解答】解:A、80出现的次数最多,所以众数是80,A正确;
B、把数据按大小排列,中间两个数为80,80,所以中位数是80,B错误;
C、平均数是=80,C正确;
D、极差是90﹣75=15,D正确.
故选:B.
【点评】此题考查学生对平均数,中位数,众数,极差的理解.
7.(3分)今年财政部将证券交易印花税税率由3‰调整为1‰(1‰表示千分之一).某人在调整后购买100 000元股票,则比调整前少交证券交易印花税多少元( )
A.200元B.2000元C.100元D.1000元
【分析】调整前所交证券交易印花税﹣调整后所交证券交易印花税,即为比调整前少交证券的交易印花税.
【解答】解:根据题意得,调整后比调整前少交证券交易印花税100000×(3‰﹣1‰)=200元.
故选:A.
【点评】本题主要考查了有理数的混合运算的实际应用.
8.(3分)下列命题中错误的是( )
A.平行四边形的对边相等
B.两组对边分别相等的四边形是平行四边形
C.矩形的对角线相等
D.对角线相等的四边形是矩形
【分析】根据平行四边形和矩形的性质和判定进行判定.
【解答】解:根据平行四边形和矩形的性质和判定可知:选项A、B、C均正确.D中说法应为:对角线相等且互相平分的四边形是矩形.
故选:D.
【点评】本题利用了平行四边形和矩形的性质和判定方法求解.
9.(3分)把二次函数y=﹣x2的图象先向右平移1个单位,再向上平移2个单位后得到一个新图象,则新图象所表示的二次函数的解析式是( )
A.y=﹣(x﹣1)2+2B.y=﹣(x+1)2+2
C.y=﹣(x﹣1)2﹣2D.y=﹣(x+1)2﹣2
【分析】解决本题的关键是得到新抛物线的顶点坐标.
【解答】解:原抛物线的顶点为(0,0),先向右平移1个单位,再向上平移2个单位那么新抛物线的顶点为(1,2).
可设新抛物线的解析式为y=﹣(x﹣h)2+k代入2得:y=﹣(x﹣1)2+2.
故选:A.
【点评】抛物线平移不改变a的值,利用平移规律解答.
10.(3分)如图,边长为1的菱形ABCD绕点A旋转,当B、C两点恰好落在扇形AEF的弧EF上时,弧BC的长度等于( )
A.B.C.D.
【分析】连接AC,根据题意可得△ABC为等边三角形,从而可得到∠A的度数,再根据弧长公式求得弧BC的长度.
【解答】解:连接AC,可得AB=BC=AC=1,则∠BAC=60°,根据弧长公式,可得
弧BC的长度等于=,故选C.
【点评】此题主要考查菱形、等边三角形的性质以及弧长公式的理解及运用.
二、填空题(共5小题,每小题3分,满分15分)
11.(3分)有5张质地相同的卡片,它们的背面都相同,正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片.现将它们背面朝上,卡片洗匀后,任抽一张是“欢欢”的概率是 .
【分析】让“欢欢”的张数除以卡片的总张数即为所求的概率.
【解答】解:因为共有正面分别印有“贝贝”、“晶晶”、“欢欢”、“迎迎”、“妮妮”五种不同形象的福娃图片,所以任抽一张是“欢欢”的概率是.
【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
12.(3分)分解因式:ax2﹣4a= a(x+2)(x﹣2) .
【分析】先提取公因式a,再对余下的多项式利用平方差公式继续分解.
【解答】解:ax2﹣4a,
=a(x2﹣4),
=a(x+2)(x﹣2).
【点评】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.
13.(3分)如图,直线OA与反比例函数y=(k≠0)的图象在第一象限交于A点,AB⊥x轴于点B,△OAB的面积为2,则k= 4 .
【分析】过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.
【解答】解:由题意得:S△OAB=|k|=2;
又由于反比例函数在第一象限,k>0;
则k=4.
故答案为:4.
【点评】主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得三角形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.
14.(3分)要在街道旁修建一个奶站,向居民区A、B提供牛奶,奶站应建在什么地方,才能使从A、B到它的距离之和最短?小聪根据实际情况,以街道旁为x轴,建立了如图所示的平面直角坐标系,测得A点的坐标为(0,3),B点的坐标为(6,5),则从A、B两点到奶站距离之和的最小值是 10 .
【分析】本题首先要明确奶站应建在何处,点A关于x轴的对称点A1的坐标是(0,﹣3),则线段A1B与x轴的交点就是奶站应建的位置.从A、B两点到奶站距离之和最小时就是线段A1B的长.通过点B向x轴作垂线与过A1和x轴平行的直线交于C,根据勾股定理就可求出.
【解答】解:点A关于x轴的对称点A1的坐标是(0,﹣3),过点B向x轴作垂线与过A1和x轴平行的直线交于C,
则A1C=6,BC=8,
∴A1B==10
∴从A、B两点到奶站距离之和的最小值是10.
故填10.
【点评】本题考查了轴对称的应用;正确确定奶站的位置是解题的关键,确定奶站的位置这一题在课本中有原题,因此加强课本题目的训练至关重要.
15.(3分)观察表一,寻找规律.表二,表三分别是从表一中选取的一部分,则a+b的值为 37 .
表一:
表二:
表三:
【分析】每一竖行相隔的数是相同的,每相邻两个横行之间相隔的数也相隔1.
【解答】解:表二从竖行看,下边的数应比上面的数大3,
∴a=14+3=17.
表三从竖行看,下边的数比上边的数大6,那么后面那行下边的数就该比上边的数大7.
∴b=13+7=20
∴a+b的值为37.
【点评】关键是通过归纳与总结,得到其中的规律.
三、解答题(共7小题,满分55分)
16.(6分)计算:|﹣3|+•tan30°﹣﹣(2008﹣π)0.
【分析】按照实数的运算法则依次计算:|﹣3|=3,tan30°=,=2,(2008﹣π)0=1.
【解答】解:原式==3+1﹣2﹣1=1.
(注:只写后两步也给满分.)
【点评】本题重点考查有理数的绝对值和求代数式值.涉及知识:负指数为正指数的倒数;任何非0数的0次幂等于1;绝对值的化简;二次根式的化简.
17.(7分)先化简代数式÷,然后选取一个合适的a值,代入求值.
【分析】本题的关键是正确进行分式的通分、约分,并准确代值计算.要注意的是a的取值需使原式有意义.
【解答】解:方法一:原式=
=
=a2+4;
方法二:原式=
=a(a﹣2)+2(a+2)
=a2+4;
取a=1,原式=5.
(注:答案不唯一.如果求值这一步,取a=2或﹣2,则不给分.)
【点评】考查学生分式运算能力.这类题也是一类创新题,有利于培养同学们的发散思维,其结论往往因所选x值的不同而不同,但要注意所选x的值要使a2﹣4≠0,即x≠±2.
18.(7分)如图,在梯形ABCD中,AB∥DC,DB平分∠ADC,过点A作AE∥BD,交CD的延长线于点E,且∠C=2∠E.
(1)求证:梯形ABCD是等腰梯形;
(2)若∠BDC=30°,AD=5,求CD的长.
【分析】(1)证明ABCD是等腰梯形,需证∠ADC=∠C,而∠BDC=∠E,而DB平分∠ADC,所以∠E=∠BDC=∠ADB,所以∠ADC=2∠E=∠C,从而可证明其是等腰梯形.
(2)根据已知得到∠C=2∠E=2∠BDC=60°,且BC=AD=5,所以∠DBC=90°,得到DC=2BC=10.
【解答】(1)证明:∵AE∥BD,
∴∠E=∠BDC.
∵DB平分∠ADC,
∴∠ADC=2∠BDC.
又∵∠C=2∠E,
∴∠ADC=∠BCD.
∴梯形ABCD是等腰梯形.
(2)解:由第(1)问,得∠C=2∠E=2∠BDC=60°,且BC=AD=5,
∵在△BCD中,∠C=60°,∠BDC=30°,
∴∠DBC=90°.
∴DC=2BC=10.
【点评】考查了等腰梯形的判定、直角三角形性质以及推理能力.
19.(8分)某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制如图所示的统计图.根据图中信息解答下列问题:
(1)哪一种品牌粽子的销售量最大?
(2)补全条形统计图;
(3)写出A品牌粽子在图中所对应的圆心角的度数;
(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.
【分析】(1)从扇形统计图中得出C品牌的销售量最大,为50%;
(2)总销售量=1200÷50%=2400个,B品牌的销售量=2400﹣1200﹣400=800个,补全图形即可;
(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;
(4)由于C品牌的销售量最大,所以建议多进C种.
【解答】解:(1)从扇形统计图中得出C品牌的销售量最大,为50%;
(2)总销售量=1200÷50%=2400个,
B品牌的销售量=2400﹣1200﹣400=800个,
(3)A品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°;
(4)建议:C品牌的粽子应该多进货.
【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.
20.(8分)如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cs∠BFA=,求△ACF的面积.
【分析】(1)利用斜边上的中线等于斜边的一半,可判断△DOB是直角三角形,则∠OBD=90°,BD是⊙O的切线;
(2)同弧所对的圆周角相等,可证明△ACF∽△BEF,得出一相似比,再利用三角形的面积比等于相似比的平方即可求解.
【解答】(1)证明:连接BO,
方法一:∵AB=AD
∴∠D=∠ABD
∵AB=AO
∴∠ABO=∠AOB
又在△OBD中,∠D+∠DOB+∠ABO+∠ABD=180°
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;
方法二:∵AB=AO,BO=AO
∴AB=AO=BO
∴△ABO为等边三角形
∴∠BAO=∠ABO=60°
∵AB=AD
∴∠D=∠ABD
又∠D+∠ABD=∠BAO=60°
∴∠ABD=30°
∴∠OBD=∠ABD+∠ABO=90°,即BD⊥BO
∴BD是⊙O的切线;
方法三:∵AB=AD=AO
∴点O、B、D在以OD为直径的⊙A上
∴∠OBD=90°,即BD⊥BO
∴BD是⊙O的切线;
(2)解:∵∠C=∠E,∠CAF=∠EBF
∴△ACF∽△BEF
∵AC是⊙O的直径
∴∠ABC=90°
在Rt△BFA中,cs∠BFA=
∴
又∵S△BEF=8
∴S△ACF=18.
【点评】本题综合考查了圆的切线的性质、圆的性质、相似三角形的判定及性质等内容,是一个综合较强的题目,难度较大.
21.(9分)“震灾无情人有情”.民政局将全市为四川受灾地区捐赠的物资打包成件,其中帐篷和食品共320件,帐篷比食品多80件.
(1)求打包成件的帐篷和食品各多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批帐篷和食品全部运往受灾地区.已知甲种货车最多可装帐篷40件和食品10件,乙种货车最多可装帐篷和食品各20件.则民政局安排甲、乙两种货车时有几种方案?请你帮助设计出来.
(3)在第(2)问的条件下,如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.民政局应选择哪种方案可使运输费最少?最少运输费是多少元?
【分析】(1)有两个等量关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,直接设未知数,列出二元一次方程组,求出解;
(2)先由等量关系得到一元一次不等式组,求出解集,再根据实际含义确定方案;
(3)分别计算每种方案的运费,然后比较得出结果.
【解答】解:(1)设该校采购了y件小帐篷,x件食品.
根据题意,得,
解得.
故打包成件的帐篷有200件,食品有120件;
(2)设甲种货车安排了z辆,则乙种货车安排了(8﹣z)辆.则
,
解得2≤z≤4.
则z=2或3或4,民政局安排甲、乙两种货车时有3种方案.
设计方案分别为:①甲车2辆,乙车6辆;
②甲车3辆,乙车5辆;
③甲车4辆,乙车4辆;
(3)3种方案的运费分别为:
①2×4000+6×3600=29600(元);
②3×4000+5×3600=30000(元);
③4×4000+4×3600=30400(元).
∵方案一的运费小于方案二的运费小于方案三的运费,
∴方案①运费最少,最少运费是29600元.
【点评】考查了二元一次方程组的应用和一元一次不等式组的应用.关键是弄清题意,找出等量或者不等关系:帐篷件数+食品件数=320,帐篷件数﹣食品件数=80,甲种货车辆数+乙种货车辆数=8,得到乙种货车辆数=8﹣甲种货车辆数,代入下面两个不等关系:甲种货车装运帐篷件数+乙种货车装运帐篷件数≥200,甲种货车装运食品件数+乙种货车装运食品件数≥120.
22.(10分)如左图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=.
(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度.
(4)如图,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
【分析】(1)求二次函数的表达式,需要求出A、B、C三点坐标.已知B点坐标,且OB=OC,可知C(0,3),tan∠ACO=,则A坐标为(﹣1,0).将A,B,C三点坐标代入关系式,可求得二次函数的表达式.
(2)假设存在这样的点F(m,n),已知抛物线关系式,求出顶点D坐标,今儿求出直线CD,E是直线与x轴交点,可得E点坐标.四边形AECF为平行四边形,则CE∥AF,则两直线斜率相等,可列等式(1),CE=AF,可列等式(2),F在抛物线上,为等式(3),根据这三个等式,即可求出m、n是否存在.
(3)分情况讨论,当圆在x轴上方时,根据题意可知,圆心必定在抛物线的对称轴上,设圆半径为r,则N的坐标为(r+1,r),将其代入抛物线解析式,可求出r的值.当圆在x轴的下方时,方法同上,只是N的坐标变为(r+1,﹣r),代入抛物线解析式即可求解.
(4)G在抛物线上,代入解析式求出G点坐标,设点P的坐标为(x,y),即(x,x2﹣2x﹣3)已知点A、G坐标,可求出线段AG的长度,以及直线AG的解析式,再根据点到直线的距离求出P到直线的距离,即为三角形AGP的高,从而用x表示出三角形的面积,然后求当面积最大时x的值.
【解答】解:(1)方法一:由已知得:C(0,﹣3),A(﹣1,0),
将A、B、C三点的坐标代入,得:
,
解得:,
所以这个二次函数的表达式为:y=x2﹣2x﹣3,
方法二:由已知得:C(0,﹣3),A(﹣1,0),
设该表达式为:y=a(x+1)(x﹣3),
将C点的坐标代入得:a=1,
所以这个二次函数的表达式为:y=x2﹣2x﹣3;
(注:表达式的最终结果用三种形式中的任一种都不扣分)
(2)方法一:存在,F点的坐标为(2,﹣3),
理由:易得D(1,﹣4),
所以直线CD的解析式为:y=﹣x﹣3,
∴E点的坐标为(﹣3,0),
由A、C、E、F四点的坐标得:AE=CF=2,AE∥CF,
∴以A、C、E、F为顶点的四边形为平行四边形,
∴存在点F,坐标为(2,﹣3),
方法二:易得D(1,﹣4),所以直线CD的解析式为:y=﹣x﹣3,
∴E点的坐标为(﹣3,0),
∵以A、C、E、F为顶点的四边形为平行四边形,
∴F点的坐标为(2,﹣3)或(﹣2,﹣3)或(﹣4,3),
代入抛物线的表达式检验,只有(2,﹣3)符合,
∴存在点F,坐标为(2,﹣3).
(3)如图,①当直线MN在x轴上方时,
设圆的半径为R(R>0),则N(R+1,R),
代入抛物线的表达式,解得,
②当直线MN在x轴下方时,
设圆的半径为r(r>0),
则N(r+1,﹣r),
代入抛物线的表达式,
解得,
∴圆的半径为或.
(4)过点P作y轴的平行线与AG交于点Q,
易得G(2,﹣3),直线AG为y=﹣x﹣1.
设P(x,x2﹣2x﹣3),则Q(x,﹣x﹣1),
PQ=﹣x2+x+2.S△APG=S△APQ+S△GPQ=(﹣x2+x+2)×3
当x=时,△APG的面积最大
此时P点的坐标为(,﹣),S△APG的最大值为.
【点评】此题考查二次函数与x轴,y轴坐标求法,顶点坐标公式,二次函数图象与平行四边形,圆相结合,重点考查了平行四边形,圆的性质特征.
声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布
日期:2021/6/18 15:44:14;用户:初中数学;邮箱:sxljy01@xyh.cm;学号:24425668
菁优网APP 菁优网公众号 菁优网小程序0
1
2
3
…
1
3
5
7
…
2
5
8
11
…
3
7
11
15
…
…
…
…
…
…
11
14
a
11
13
17
b
0
1
2
3
…
1
3
5
7
…
2
5
8
11
…
3
7
11
15
…
…
…
…
…
…
11
14
a
11
13
17
b
2021年广东省深圳市中考数学试卷: 这是一份2021年广东省深圳市中考数学试卷,共12页。
2017年广东省深圳市中考数学试卷: 这是一份2017年广东省深圳市中考数学试卷,共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2016年广东省深圳市中考数学试卷: 这是一份2016年广东省深圳市中考数学试卷,共27页。试卷主要包含了单项选择题,填空题,解答题等内容,欢迎下载使用。