- 第1章 解直角三角形(培优卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版) 试卷 1 次下载
- 第1章 解直角三角形(基础卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版) 试卷 1 次下载
- 第2章 直线与圆的位置关系(培优卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版) 试卷 1 次下载
- 第3章 三视图与表面展开图(培优卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版) 试卷 1 次下载
- 第3章 三视图与表面展开图(基础卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版) 试卷 1 次下载
第2章 直线与圆的位置关系(基础卷)——2022-2023学年九年级下册数学单元卷(浙教版)(原卷版+解析版)
展开第2章 直线与圆的位置关系(A卷·知识通关练)
核心知识1 直线与圆的位置关系
1.如图,中,,,,以点为圆心,为半径作,当时,与的位置关系是( )
A.相离 B.相切 C.相交 D.无法确定
2.在Rt△ABC中,∠ACB=90°,AC=3,BC=4.点O为边AB上一点(不与A重合)⊙O是以点O为圆心,AO为半径的圆.当⊙O与三角形边的交点个数为3时,则OA的范围( )
A.0<OA≤或2.5≤OA<5 B.0<OA或OA=2.5
C.OA=2.5 D.OA=2.5或
3.如图,的圆心的坐标为,半径为1,直线的表达式为,是直线上的动点,是上的动点,则的最小值是( )
A. B. C. D.
4.如图,在边长为3的菱形中,,是边上的一点,且,是边上的一动点,将沿所在直线翻折得到,连接.则长度的最小值是_____.
5.在平面直角坐标系xOy中,点A在直线l上,以A为圆心,OA为半径的圆与y轴的另一个交点为E.给出如下定义:若线段OE,⊙A和直线l上分别存在点B,点C和点D,使得四边形ABCD是矩形(点A,B,C,D顺时针排列),则称矩形ABCD为直线l的“位置矩形”.
例如,图中的矩形ABCD为直线l的“位置矩形”.
(1)若点A(-1,2),四边形ABCD为直线x=-1的“位置矩形”,则点D的坐标为 ;
(2)若点A(1,2),求直线y=kx+1(k≠0)的“位置矩形”的面积;
(3)若点A(1,-3),直线l的“位置矩形”面积的最大值为 ,此时点D的坐标为 .
核心知识2 切线的性质与判定
6.下列命题中的真命题是( )
①相等的角是对顶角 ②矩形的对角线互相平分且相等 ③垂直于半径的直线是圆的切线 ④顺次连接四边形各边中点所得四边形是平行四边形.
A.①② B.②③ C.③④ D.②④
7.如图,菱形OABC的顶点A,B,C在⊙O上,过点B作⊙O的切线交OA的延长线于点D.若⊙O的半径为1,则BD的长为( )
A.1 B.2 C. D.
8.如图,A、B是⊙O上的两点,AC是过A点的一条直线,如果∠AOB=120°,那么当∠CAB的度数等于________度时,AC才能成为⊙O的切线.
9.如图,AB为的直径,C为上一点,D为BA延长线上一点,.
求证:DC为的切线;
线段DF分别交AC,BC于点E,F且,的半径为5,,求CF的长.
10.按要求作图:
(1)如图1,在正方形网格中,有一圆经过了两个小正方形的顶点A,B,利用无刻度直尺画出这个圆的一条直径;
(2)如图2,BA,BD是⊙O中的两条弦,C是BD上一点,BAC50,利用无刻度直尺在图中画一个含有50角的直角三角形;
(3)如图3,利用无刻度直尺和圆规,以AB边上一点O为圆心,过A、D两点作⊙O(不写作法,保留作图痕迹);
(4)如图4,AB与圆相切,且切点为点B,利用无刻度直尺在网格中找出点B的位置.
11.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD交圆的切线BE于点E
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BED=60°,PD=,求PA的长;
(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.
核心知识3 切线的应用
12.如图,已知⊙P的半径为2,圆心P在抛物线y=x2﹣1上运动,当⊙P与x轴相切时,圆心P的坐标为_____.
13.如图,为的直径,为上一点,过点的切线交的延长线于点,为弦的中点,,,若点为直径上的一个动点,连接,当是直角三角形时,的长为__________.
14.在矩形ABCD中,AB=6,BC=8,点O在对角线AC上,圆O的半径为2,如果圆O与矩形ABCD的各边都没有公共点,那么线段AO长的取值范围是____.
15.如图,在中,,以为直径的分别与交于点,过点作,垂足为点.
(1)求证:直线是的切线;
(2)求证:;
(3)若的半径为4,,求阴影部分的面积.
16.如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点.若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是________.
核心知识4 切线长定理
17.如图,的内切圆与分别相切于点D,E,F,连接,,,,,则阴影部分的面积为( )
A. B. C. D.
18.如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是( )
A.PA=PB B.∠BPD=∠APD C.AB⊥PD D.AB平分PD
19.如图已知是半径,弦垂直于,点是上的一点,和相交于另一点,过点的切线和的延长线交于点,
(1)求证:;
(2)当,时,求的值.
20.图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
21.如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为______.
22.如图1,在四边形中,,,是的直径,平分.
(1)求证:直线与相切;
(2)如图2,记(1)中的切点为,为优弧上一点,,.求的值.
核心知识5 三角形的内切圆
23.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4 B.6.25 C.7.5 D.9
24.已知一个三角形的三边长分别为5、7、8,则其内切圆的半径为( )
A. B. C. D.
25.如图,甲、乙、丙、丁四位同学从四块全等的等腰直角三角形纸板上裁下四块不同的纸板(阴影部分),他们的具体裁法如下:甲同学:如图1所示裁下一个正方形,面积记为S1;乙同学:如图2所示裁下一个正方形,面积记为S2;丙同学:如图3所示裁下一个半圆,使半圆的直径在等腰Rt△的直角边上,面积记为S3;丁同学:如图所示裁下一个内切圆,面积记为S4则下列判断正确的是( )
①S1=S2;②S3=S4;③在S1,S2,S3,S4中,S2最小.
A.①② B.②③ C.①③ D.①②③
26.如图,等腰的内切圆⊙与,,分别相切于点,,,且, ,则的长是( )
A. B. C. D.
27.如图1~4,在直角边分别为3和4的直角三角形中,每多作一条斜边上的高就增加一个三角形的内切圆,依此类推,图10中有10个直角三角形的内切圆,它们的面积分别记为S1,S2,S3,…,S10,则S1+S2+S3+…+S10=______.
核心知识6 三角形的内心
28.直角三角形的两条直角边分别是5和12,则它的内切圆半径为_____.
29.如图所示的网格由边长为个单位长度的小正方形组成,点、、、在直角坐标系中的坐标分别为,,,则内心的坐标为______.
核心知识7 圆的综合
30.在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为( )
A. B. C.34 D.10
31.如图,是的直径,、是弧(异于、)上两点,是弧上一动点,的角平分线交于点,的平分线交于点.当点从点运动到点时,则、两点的运动路径长的比是( )
A. B. C. D.
32.如图,△ABC内接于⊙O,∠CBG=∠A,CD为直径,OC与AB相交于点E,过点E作EF⊥BC,垂足为F,延长CD交GB的延长线于点P,连接BD.
(1)求证:PG与⊙O相切;
(2)若=,求的值;
(3)在(2)的条件下,若⊙O的半径为8,PD=OD,求OE的长.
33.如图,已知点A(3,0),以A为圆心作⊙A与Y轴切于原点,与x轴的另一个交点为B,过B作⊙A的切线l.
(1)以直线l为对称轴的抛物线过点A及点C(0,9),求此抛物线的解析式;
(2)抛物线与x轴的另一个交点为D,过D作⊙A的切线DE,E为切点,求此切线长;
(3)点F是切线DE上的一个动点,当△BFD与△EAD相似时,求出BF的长.
34.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F,BG⊥AD,垂足为G,BG交DE于点H,DC,FB的延长线交于点P,且PC=PB,
(1)求证:BG∥CD;
(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.
35.如图,在以线段AB为直径的⊙O上取一点,连接AC、BC,将△ABC沿AB翻折后得到△ABD
(1)试说明点D在⊙O上;
(2)在线段AD的延长线上取一点E,使AB2=AC·AE,求证:BE为⊙O的切线;
(3)在(2)的条件下,分别延长线段AE、CB相交于点F,若BC=2,AC=4,求线段EF的长.