

北师大版七年级下册2 探索直线平行的条件同步测试题
展开
这是一份北师大版七年级下册2 探索直线平行的条件同步测试题,共5页。
平行线的判定(基础)知识讲解【学习目标】1.熟练掌握平行线的画法;2.掌握平行公理及其推论;3.掌握平行线的判定方法,并能运用“平行线的判定方法”,判定两条直线是否平行. 【要点梳理】要点一、平行线的画法及平行公理1.平行线的画法用直尺和三角板作平行线的步骤:①落:用三角板的一条斜边与已知直线重合.②靠:用直尺紧靠三角板一条直角边.③推:沿着直尺平移三角板,使与已知直线重合的斜边通过已知点.④画:沿着这条斜边画一条直线,所画直线与已知直线平行.2.平行公理及推论平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.要点二、平行线的判定判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB∥CD(同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB∥CD(内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB∥CD(同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、平行公理及推论1.下列说法中正确的有 ( ) ①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点有且只有一条直线与已知直线平行. A.1个 B 2个 C.3个 D.4个【答案】 A 【详解】一条直线的平行线有无数条,故①错;②中的点在直线外还是在直线上位置不明确,所以②错,③中b与c的位置关系不明确,所以③也是错误的;根据平行公理可知④正确,故选A.【总结升华】本题主要考察的是“平行公理及推论”的内容,要正确理解必须要抓住关键字词及其重要特征,在理解的基础上记忆,在比较中理解.举一反三:【变式】直线a∥b,b∥c,则直线a与c的位置关系是 .【答案】平行 类型二、平行线的判定2.(2015秋•龙岗区期末)已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.【思路点拨】首先由BE⊥FD,得∠1和∠D互余,再由已知,∠C=∠1,∠2和∠D互余,所以得∠C=∠2,从而证得AB∥CD.【答案与详解】证明:∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD.【总结升华】此题考查的知识点是平行线的判定,关键是由BE⊥FD及三角形内角和定理得出∠1和∠D互余.举一反三:【变式1】(2020•郑州一模)如图,能判定EC∥AB的条件是( )A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE【答案】D.提示:A、两个角不是同位角、也不是内错角,故选项错误;B、两个角不是同位角、也不是内错角,故选项错误;C、不是EC和AB形成的同位角、也不是内错角,故选项错误;D、正确. 【变式2】已知,如图,BE平分ABC,CF平分BCD,1=2,求证:AB//CD.【答案】∵ 1=2∴ 21=22 ,即∠ABC=∠BCD∴ AB//CD (内错角相等,两直线平行)3.如图所示,由(1)∠1=∠3,(2)∠BAD=∠DCB,可以判定哪两条直线平行. 【思路点拨】试着将复杂的图形分解成“基本图形”.【答案与详解】解:(1)由∠1=∠3,可判定AD∥BC(内错角相等,两直线平行);(2)由∠BAD=∠DCB,∠1=∠3得:∠2=∠BAD-∠1=∠DCB-∠3=∠4(等式性质),即∠2=∠4可以判定AB∥CD(内错角相等,两直线平行).综上,由(1)(2)可判定:AD∥BC,AB∥CD.【总结升华】本题探索结论的过程采用了“由因索果”的方法.即在条件下探索由这些条件可推导出哪些结论,再由这些结论推导出新的结论,直到得出结果. 4.在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?【答案与详解】解:这两条直线平行.理由如下:如图:∵ b⊥a, c⊥a∴ ∠1=∠2=90°∴ b∥c (同位角相等,两直线平行) . 【总结升华】本题的结论可以作为两直线平行的判定方法.举一反三:【变式】已知,如图,EFEG,GMEG,1=2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图: ∵ EFEG,GMEG (已知), ∴ ∠FEQ=∠MGE=90°(垂直的定义). 又∵ ∠1=∠2(已知), ∴ ∠FEQ -∠1=∠MGE -∠2 (等式性质), 即∠3=∠4. ∴ AB∥CD (同位角相等,两直线平行).
相关试卷
这是一份初中数学北师大版八年级上册3 平行线的判定达标测试,共5页。
这是一份北师大版七年级下册1 同底数幂的乘法课后测评,共4页。
这是一份初中数学北师大版七年级下册6 完全平方公式综合训练题,共5页。
