高考数学一轮复习 专题9.6 直线与圆锥曲线(练)
展开高考数学一轮复习策略
1、揣摩例题。
课本上和老师讲解的例题,一般都具有一定的典型性和代表性。要认真研究,深刻理解,要透过“样板”,学会通过逻辑思维,灵活运用所学知识去分析问题和解决问题,特别是要学习分析问题的思路、解决问题的方法,并能总结出解题的规律。
2、精练习题
复习时不要搞“题海战术”,应在老师的指导下,选一些源于课本的变式题,或体现基本概念、基本方法的基本题,通过解题来提高思维能力和解题技巧,加深对所学知识的深入理解。在解题时,要独立思考,一题多思,一题多解,反复玩味,悟出道理。
3、加强审题的规范性
每每大考过后,总有同学抱怨没考好,纠其原因是考试时没有注意审题。审题决定了成功与否,不解决这个问题势必影响到高考的成败。那么怎么审题呢? 应找出题目中的已知条件 ;善于挖掘题目中的隐含条件 ;认真分析条件与目标的联系,确定解题思路 。
4、重视错题
“错误是最好的老师”,但更重要的是寻找错因,及时进行总结,三五个字,一两句话都行,言简意赅,切中要害,以利于吸取教训,力求相同的错误不犯第二次。
专题9.6 直线与圆锥曲线
1.(2021·四川成都市·成都七中高三月考(文))已知点是抛物线的焦点,点为抛物线的对称轴与其准线的交点,过作抛物线的切线,切点为,若点恰在以、为焦点的双曲线上,则双曲线的离心率为( )
A. B.
C. D.
2.(2022·全国高三专题练习)直线4kx-4y-k=0与拋物线y2=x交于A、B两点,若|AB|=4,则弦AB的中点到直线x+=0的距离等于( )
A. B. C. D.
3.(2020·浙江高三月考)如图,已知抛物线和圆,直线经过的焦点,自上而下依次交和于A,B,C,D四点,则的值为
A. B. C.1 D.2
4.(2019·天津高考真题(理))已知抛物线的焦点为,准线为.若与双曲线的两条渐近线分别交于点A和点B,且(为原点),则双曲线的离心率为
A. B. C.2 D.
5.【多选题】(2021·河北沧州市·高三月考)已知直线与抛物线交于两点,若线段的中点是,则( )
A. B.
C. D.点在以为直径的圆内
6.(2021·江苏扬州·高三月考)直线过抛物线的焦点F,且与C交于A,B两点,则___________.
7.(2022·全国高三专题练习)在直角坐标系xOy中,直线l过抛物线y2=4x的焦点F,且与该抛物线相交于A、B两点,其中点A在x轴上方.若直线l的倾斜角为60°,则△OAF的面积为________.
8.(2022·全国高三专题练习)抛物线的焦点F是圆x2+y2-4x=0的圆心.
(1)求该抛物线的标准方程;
(2)直线l的斜率为2,且过抛物线的焦点,若l与抛物线、圆依次交于A、B、C、D,求|AB|+|CD|.
9. (2020·广西钦州·高二期末(文))已知抛物线的顶点为,焦点坐标为.
(1)求抛物线方程;
(2)过点且斜率为1的直线与抛物线交于,两点,求线段的值.
10.(2021·江苏扬州·高三月考)在平面直角坐标系中,已知椭圆()的右焦点为,离心率为.
(1)求椭圆C的标准方程;
(2)若过点F的直线l交C于A,B两点,线段的中点为M,分别过A,B作C的切线,,且与交于点P,证明:O,P,M三点共线.
1.【多选题】(2021·山东济南·高三月考)已知直线过抛物线的焦点,且直线与抛物线交于两点,过两点分别作抛物线的切线,两切线交于点,设,, .则下列选项正确的是( )
A.
B.以线段为直径的圆与直线相离
C.当时,
D.面积的取值范围为
2.(2019·全国高三月考(文))已知抛物线的焦点为F,直线与抛物线交于M,N两点,且以线段MN为直径的圆过点F,则p=( )
A.1 B.2 C.4 D.6
3.(2020·山西运城·高三月考(理))已知抛物线的焦点为,为坐标原点,点在抛物线上,且,点是抛物线的准线上的一动点,则的最小值为( ).
A. B. C. D.
4.(2021·重庆北碚区·西南大学附中高三月考)已知分别为双曲线的左、右焦点,过的直线与双曲线的右支交于两点,记的内切圆的半径为,的内切圆的半径为,圆、的面积为、,则的取值范围是__________.
5.(2020·山东青岛·高三开学考试)已知直线:与抛物线:在第一象限的交点为,过的焦点,,则抛物线的准线方程为_______;_______.
6.(2020·江苏如皋·高二月考)已知是抛物线的焦点,,为抛物线上任意一点,的最小值为,则________;若过的直线交抛物线于、两点,有,则________.
7.(2021·天津南开区·南开中学高三月考)设椭圆:的左焦点为,离心率为,过点且与轴垂直的直线被椭圆截得的线段长为.
(1)求椭圆的方程;
(2)设,分别为椭圆的左、右顶点,过点且斜率为的直线与椭圆交于点,两点,且,求的值.
8.(2021·北京)在平面直角坐标系xOy中,抛物线C的焦点在y轴上,且抛物线上的点P(x0,4)到焦点F的距离为5.斜率为2的直线l与抛物线C交于A,B两点.
(1)求抛物线C的标准方程,及抛物线在P点处的切线方程;
(2)若AB的垂直平分线分别交y轴和抛物线于M,N两点(M,N位于直线l两侧),当四边形AMBN为菱形时,求直线l的方程.
9. (2019·天津高考真题(文)) 设椭圆的左焦点为,左顶点为,上顶点为B.已知(为原点).
(Ⅰ)求椭圆的离心率;
(Ⅱ)设经过点且斜率为的直线与椭圆在轴上方的交点为,圆同时与轴和直线相切,圆心在直线上,且,求椭圆的方程.
10.(2019·全国高三月考(理))如图,己知抛物线,直线交抛物线于两点,是抛物线外一点,连接分别交地物线于点,且.
(1)若,求点的轨迹方程.
(2)若,且平行x轴,求面积.
1. (2021·天津高考真题)已知双曲线的右焦点与抛物线的焦点重合,抛物线的准线交双曲线于A,B两点,交双曲线的渐近线于C、D两点,若.则双曲线的离心率为( )
A. B. C.2 D.3
2.(2020·全国高考真题(理))已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
3.(2019·浙江高考真题)已知椭圆的左焦点为,点在椭圆上且在轴的上方,若线段的中点在以原点为圆心,为半径的圆上,则直线的斜率是_______.
4.(2020·全国高考真题(文))已知椭圆的离心率为,,分别为的左、右顶点.
(1)求的方程;
(2)若点在上,点在直线上,且,,求的面积.
5.(2019·江苏高考真题)如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
6.(2021·山东高考真题)已知抛物线的顶点是坐标原点,焦点在轴的正半轴上,是抛物线上的点,点到焦点的距离为1,且到轴的距离是.
(1)求抛物线的标准方程;
(2)假设直线通过点,与抛物线相交于,两点,且,求直线的方程.
专题9.6 直线与圆锥曲线位置关系(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用): 这是一份专题9.6 直线与圆锥曲线位置关系(讲+练)-备战高考数学大一轮复习核心考点精讲精练(新高考专用),文件包含专题96直线与圆锥曲线位置关系原卷版docx、专题96直线与圆锥曲线位置关系解析版docx等2份试卷配套教学资源,其中试卷共61页, 欢迎下载使用。
2024届高考数学复习第一轮讲练测专题9.6 直线与圆锥曲线 教师版: 这是一份2024届高考数学复习第一轮讲练测专题9.6 直线与圆锥曲线 教师版,共27页。试卷主要包含了故所求的抛物线焦点为,,已知直线等内容,欢迎下载使用。
人教版高考数学一轮复习考点规范练47直线与圆锥曲线含答案: 这是一份人教版高考数学一轮复习考点规范练47直线与圆锥曲线含答案,共5页。试卷主要包含了故选B等内容,欢迎下载使用。