第四章第五节 粒子的波动性和量子力学的建立 课件 高二下学期物理人教版(2019)选择性必修第三册 (1)
展开
这是一份第四章第五节 粒子的波动性和量子力学的建立 课件 高二下学期物理人教版(2019)选择性必修第三册 (1),共15页。
4.5 粒子的波动性和量子力学的建立 通过对双缝干涉、光电效应等一系列问题的研究,人们终于认识到光既有波动性,又有粒子性。问题:我们已经认识到如电子、质子等实物粒子是具有粒子性的,那么,实物粒子是否也会同时具有波动性呢?粒子的波动性 1924年,法国物理学家德布罗意在对光的波粒二象性、玻尔氢原子理论以及相对论的深入研究的基础上,把波粒二象性推广到实物粒子,如电子、质子等。他写道:“整个世纪①以来,在光学上,与波动方面的研究相比,忽视了粒子方面的研究;而在实物粒子的研究上,是否发生了相反的错误呢?是不是我们把粒子方面的图像想得太多,而忽视了波的现象?他提出假设:实物粒子也具有波动性,即每一个运动的粒子都与一个对应的波相联系。粒子的能量 ε 和动量p 跟它所对应的波的频率v和波长 λ 之间,遵从如下关系这种与实物粒子相联系的波后来被称为德布罗意波,也叫作物质波物质波的实验验证 德布罗意关于实物粒子具有波动性的假说在当时来看是难以理解的。真正判定这个假说是否“站得住脚”的只能是实验我们知道,光的干涉和衍射现象是光具有波动性的有力证据。因此,如果电子、质子等实物粒子也真的具有波动性,那么,它们就应该像光波那样也能发生干涉和衍射。这是验证德布罗意波是否存在的一条途径。电子的德布罗意波长与X射线的波长具有相近的数量级。前面讲过,X射线在通过晶体时会发生明显的衍射。物质波的实验验证 1927年戴维孙和G. P. 汤姆孙分别用单晶和多晶晶体做了电子束衍射的实验,得到了类似图4.5-1的衍射图样,从而证实了电子的波动性。在后来的实验中,人们还进一步观测到了电子德布罗意波的干涉现象(图4.5-2)。概率波物质波的实验验证 1929年,德布罗意因提出物质波的假说获得了诺贝尔物理学奖。在之后,戴维孙和G. P. 汤姆孙因证实电子波动性获得了1937年的诺贝尔物理学奖。 G. P. 汤姆孙的父亲 J. J. 汤姆孙因发现电子而获诺贝尔物理学奖,他则由于验证了电子的波动性而获诺贝尔物理学奖。这是科学史上的一段佳话物质波的实验验证 除了电子以外,后来还陆续证实了中子、质子以及原子、分子的波动性。对于这些粒子,德布罗意给出的 v = ε/h和 λ = h/p的关系同样正确。宏观物体的质量比微观粒子大得多,它们运动时的动量很大,根据 λ = h/p可知,它们对应的德布罗意波的波长就很短。例如,一个质量为0.01 kg,速度为300 m/s的子弹,它的德布罗意波长只有2.2×10-34m,比宏观物体的尺度小得多,根本无法观察到它的波动性。而一个原来静止的电子,在经过100 V电压加速后,德布罗意波长约为0.12 nm,因此有可能观察到电子的波动性。物质波的实验验证 德布罗意提出物质波的观念被实验证实,表明电子、质子、原子等粒子不但具有粒子的性质,而且具有波动的性质。换句话说,它们和光一样,也具有波粒二象性。量子力学的建立 19、20世纪之交,人们在黑体辐射、光电效应、氢原子光谱等许多类问题中,都发现了经典物理学无法解释的现象。 这些现象不是孤立的,而是在各类系统中普遍存在的,且都和原子、分子等微观粒子的行为紧密相关 在这些问题中经典物理学往往连实验结果的定性行为都无法解释。这就表明,微观世界的物理规律和宏观世界的物理定律可能存在巨大的差别,人们需要建立描述微观世界的物理理论。量子力学的建立 普朗克黑体辐射理论、爱因斯坦光电效应理论、康普顿散射理论、玻尔氢原子理论以及德布罗意物质波假说等一系列理论在解释实验方面都取得了成功。 但它们中的每一个,都是针对一个特定的具体问题,都不是统一的普遍性理论。量子力学的建立 值得注意的是,在这些成功的理论中,普朗克常量都扮演了关键性的角色(图4.5-3)。这就预示着这些理论之间存在着紧密的内在联系。在它们的背后,应该存在着统一描述微观世界行为的普遍性规律量子力学的建立 人们在20世纪20年代成功地建立了这种普遍性理论。1925年,德国物理家海森堡和玻恩等人对玻尔的氢原子理论进行了推广和改造,使之可以适用于更普遍的情况。他们建立的理论被称为矩阵力学。 很快,1926年,奥地利物理学家薛定谔提出了物质波满足的方程——薛定谔方程(图4.5-4)。把这个方程应用于氢原子,就很容易能得到氢原子光谱的公式。同时,这个方程还可以方便地应用于其他的系统,使玻尔理论的局限得以消除。由于这个理论的关键是物质波,因此被称为波动力学量子力学的建立 1926年,薛定谔和美国物理学家埃卡特很快又证明,波动力学和矩阵力学在数学上是等价的,它们是同一种理论的两种表达方式。 随后数年,在以玻恩、海森堡、薛定谔以及英国的狄拉克和奥地利的泡利为代表的众多物理学家的共同努力下,描述微观世界行为的理论被逐步完善并最终完整地建立起来,它被称为量子力学量子力学是在普朗克、玻尔等人所建立的一个个的具体理论(它们被统称为“早期量子论”)的基础上创立的。它继承了早期量子论的成功之处并克服了其困难和局限,最终取代了早期量子论,成为统一描述微观世界物理规律的普遍理论量子力学的创立是物理学历史上的一次重要革命。它和相对论共同构成了20世纪以来物理学的基础。量子力学的应用 量子力学被应用到众多具体物理系统中,得到了与实验符合得很好的结果,获得了极大的成功。借助量子力学,人们深入认识了微观世界的组成、结构和属性。量子力学推动了核物理和粒子物理的发展。人们认识了原子、原子核、基本粒子等各个微观层次的物质结构。而粒子物理学的发展又促进了天文学和宇宙学的研究。从整个宇宙到微小的粒子,人类探索自然的视野前所未有的宽广。人们惊讶地发现,世界具有奇妙的结构,最微观层次和最宏观层次的规律,竟有着紧密的联系。核物理的发展,还让人们成功地认识并利用了原子核反应堆所释放的能量——核能。爱因斯坦说:“这是人们第一次利用太阳以外的能量。”量子力学的应用量子力学推动了原子、分子物理和光学的发展。人们认识了原子的结构,以及原子、分子和电磁场相互作用的方式。在此基础上,发展了各式各样的对原子和电磁场进行精确操控和测量的技术,如激光、核磁共振、原子钟,等等。核磁共振技术使人们可以利用振荡的磁场测量材料中原子的性质,因此,被广泛地用于化学、生物研究和医学诊断。原子钟利用原子为电磁波校准频率,从而实现了对时间的高精度测量。在日常生活和国家安全中发挥巨大作用的卫星定位技术,其核心部件就是原子钟。激光技术使人们第一次拥有了纯净可控的光源,我们今天能在全球范围内实现即时通信,基础之一就是以激光为载体的光纤网络(图4.5-5)。