数学九年级上册22.1.1 二次函数精练
展开第13课 待定系数法求二次函数的解析式
课程标准 |
1. 能用待定系数法列方程组求二次函数的解析式; 2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的. |
知识点01 用待定系数法求二次函数解析式
1.二次函数解析式常见有以下几种形式 :
(1)一般式: (a,b,c为常数,a≠0);
(2)顶点式: (a,h,k为常数,a≠0);
(3)交点式: (,为抛物线与x轴交点的横坐标,a≠0).
2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下
第一步,设: ;
第二步,代: ;
第三步,解: ;
第四步,还原: .
要点诠释:
在设函数的解析式时,一定要根据题中所给条件选择合适的形式:
①当已知 ,可设函数的解析式为;
②当已知 ,可设函数的解析式为;
③当已知 ,可设函数的解析式为.
考法01 用待定系数法求二次函数解析式
【典例1】已知二次函数的图象过(-1,-9)、(1,-3)和(3,-5)三点,求此二次函数的解析式.
【即学即练1】已知二次函数图象过点O(0,0)、A(1,3)、B(﹣2,6),求函数的解析式和对称轴.
【典例2】已知抛物线的顶点坐标为M(1,﹣2),且经过点N(2,3),求此二次函数的解析式.
【即学即练2】在直角坐标平面内,二次函数图象的顶点为,且过点.
(1)求该二次函数的解析式;
(2)将该二次函数图象向右平移几个单位,可使平移后所得图象经过坐标原点?并直接写出平移后所得图象与轴的另一个交点的坐标.
【典例3】抛物线的图象如图,则它的函数表达式是 .当x 时,y>0.
考法02 用待定系数法解题
【典例4】已知抛物线经过(3,5),A(4,0),B(-2,0),且与y轴交于点C.
(1)求二次函数解析式;
(2)求△ABC的面积.
题组A 基础过关练
1.已知一条抛物线经过 E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为( )
A.E,F B.E,G C.E,H D.F,G
2.抛物线的图象如图所示,则此抛物线的解析式为 .
3.已知A(0,3),B(2,3)是抛物线y=-x2+bx+c上两点,该抛物线的顶点坐标是_____.
4.如图,已知二次函数y=x2+bx+c的图象经过点(﹣1,0),(1,﹣2),当y随x的增大而增大时,x的取值范围是______.
5.根据下列条件,分别求出对应的二次函数的关系式.
(1)已知二次函数的图象经过点A(0,-1),B(1,0),C(-1,2);
(2)已知抛物线的顶点为(1,-3),且与y轴交于点(0,1);
(3)已知抛物线与x轴交于点M(-3,0),(5,0),且与y轴交于点(0,-3);
(4)已知抛物线的顶点为(3,-2),且与x轴两交点间的距离为4.
6.二次函数图象与轴交于点,与轴交于点,且经过点D(3,-8).求此二次函数的解析式及顶点坐标.
7.已知二次函数的图像的顶点坐标为A(3,3),且过点B(2,0),求该函数的关系式.
8.已知抛物线对称轴为直线x=3,且抛物线经过点A(2,0),B(1,6),求抛物线解析式.
题组B 能力提升练
1.已知抛物线的顶点坐标为,它与轴有两个交点,两交点间的距离为6,则此抛物线的解析式为__________.
2.关于x的二次函数的图象与x轴交于点和点,与y轴交于点
(1)求二次函数的解析式;
(2)求二次函数的对称轴和顶点坐标.
3.已知二次函数的图象经过两点.
(1)求的值.
(2)试判断点是否在此函数的图象上.
4.已知抛物线经过,两点.
(1)求该抛物线的函数关系式;
(2)若将该抛物线向上平移3个单位长度,求出平移后的函数关系式并直接写出开口方向及顶点坐标.
5.已知二次函数的图象经过两点,求此二次函数的解析式.
6.已知k是常数,抛物线y=x2+(k2+k-6)x+3k的对称轴是y轴,并且与x轴有两个交点.
(1)求k的值:
(2)若点P在抛物线y=x2+(k2+k-6)x+3k上,且P到y轴的距离是2,求点P的坐标.
7.已知点A(1,1)在抛物线y=x2+(2m+1)x﹣n﹣1上
(1)求m、n的关系式;
(2)若该抛物线的顶点在x轴上,求出它的解析式.
题组C 培优拔尖练
1.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣x2+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.
(1)求此抛物线的解析式.
(2)求此抛物线顶点D的坐标和四边形ABCD的面积.
2.如图,抛物线的图象与轴交于和两点,交轴于点,点、是抛物线上的一对对称点,一次函数的图象过点、.
(1)请直接写出D点的坐标.
(2)求抛物线的解析式.
(3)在抛物线的对称轴上是否存在点,使得的周长最小,若存在,求出点的坐标;若不存在,请说明理由.
3.已知二次函数()与一次函数的图象相交于A、B两点,如图所示,其中.
(1)请求出以上两个函数的解析式;
(2)求点B的坐标;
(3)求的面积.
4.如图,已知抛物线的方程y=- (x+2)(x-m) (m>0)与x轴交于B、C,与y轴交于点E,且点B在点C的左侧,抛物线还经过点P(2,2)
(1)求该抛物线的解析式
(2)在(1)的条件下,求△BCE的面积
(3)在(1)的条件下,在抛物线的对称轴上找一点H,使EH+BH的值最小。求出点H的坐标。
5.如图,▱ABCD与抛物线y=﹣x2+bx+c相交于点A,B,D,点C在抛物线的对称轴上,已知点B(﹣1,0),BC=4.
(1)求抛物线的解析式;
(2)求BD的函数表达式.
初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试精品同步测试题: 这是一份初中数学人教版九年级上册22.1 二次函数的图象和性质综合与测试精品同步测试题,文件包含第12课待定系数法求二次函数的解析式教师版docx、第12课待定系数法求二次函数的解析式学生版docx等2份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数优秀巩固练习: 这是一份人教版九年级上册第二十二章 二次函数22.1 二次函数的图象和性质22.1.1 二次函数优秀巩固练习,文件包含人教版九年级数学上册同步精品讲义第12课待定系数法求二次函数的解析式教师版doc、人教版九年级数学上册同步精品讲义第12课待定系数法求二次函数的解析式原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
初中数学人教版九年级上册22.1.1 二次函数精品第2课时同步训练题: 这是一份初中数学人教版九年级上册22.1.1 二次函数精品第2课时同步训练题,文件包含人教版数学九年级上册2214《用待定系数法求二次函数的解析式》第2课时作业解析版docx、人教版数学九年级上册2214《用待定系数法求二次函数的解析式》第2课时作业原卷版docx等2份试卷配套教学资源,其中试卷共73页, 欢迎下载使用。