人教版数学九年级上册同步讲义第27课正多边形和圆(原卷版)
展开第27课 正多边形和圆
课程标准 |
1.了解正多边形和圆的有关概念及对称性; 2.理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用正多边形和圆的有关知识画正多边形; 3.会进行正多边形的有关计算. |
知识点01 正多边形的概念
相等, 也相等的多边形是正多边形.
要点诠释:
判断一个多边形是否是正多边形,必须满足两个条件:
(1) 相等;
(2) 相等;缺一不可.
如菱形的各边都相等,矩形的各角都相等,但它们都不是正多边形(正方形是正多边形).
知识点02 正多边形的重要元素
1.正多边形的外接圆和圆的内接正多边形
正多边形和圆的关系十分密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆.
2.正多边形的有关概念
(1)一个正多边形的外接圆的圆心叫做这个正多边形的 .
(2)正多边形外接圆的半径叫做正多边形的 .
(3)正多边形每一边所对的圆心角叫做正多边形的 .
(4)正多边形的中心到正多边形的一边的距离叫做正多边形的 .
3.正多边形的有关计算
(1)正n边形每一个内角的度数是 ;
(2)正n边形每个中心角的度数是 ;
(3)正n边形每个外角的度数是 .
要点诠释:
要熟悉正多边形的基本概念和基本图形,将待解决的问题转化为直角三角形.
知识点02 正多边形的性质
1.正多边形都 外接圆,圆有 个内接正多边形.
2.正n边形的半径和边心距把正n边形分成 个全等的直角三角形.
3.正多边形都是 图形,对称轴的条数与它的边数相同,每条对称轴都通过正n边形的中心;
当边数是偶数时,它也是 图形,它的 就是对称中心.
4.边数相同的正多边形相似。它们周长的比,边心距的比,半径的比都等于相似比,面积的比等于相似比的平方.
5.任何正多边形都有 外接圆和 内切圆,这两个圆是
要点诠释:
(1)各边相等的圆的内接多边形是圆的内接正多边形;
(2)各角相等的圆的外切多边形是圆的外切正多边形.
知识点03 正多边形的画法
1.用量角器等分圆
由于在同圆中相等的圆心角所对的弧也相等,因此作相等的圆心角(即等分顶点在圆心的周角)可以 ;根据同圆中相等弧所对的 相等,依次连接各分点就可画出相应的正n边形.
2.用尺规等分圆
对于一些特殊的正n边形,可以用圆规和直尺作图.
①正四、八边形.
在⊙O中,用尺规作两条互相垂直的直径就可把圆分成4等份,从而作出正四边形. 再逐次平分各边所对的弧(即作∠AOB的平分线交于E) 就可作出正八边形、正十六边形等,边数逐次倍增的正多边形.
②正六、三、十二边形的作法.
通过简单计算可知,正六边形的边长与其半径相等,所以,在⊙O中,任画一条直径AB,分别以A、B为圆心,以⊙O的半径为半径画弧与⊙O相交于C、D和E、F,则A、C、E、B、F、D是⊙O的6等分点.
显然,A、E、F(或C、B、D)是⊙O的3等分点.
同样,在图(3)中平分每条边所对的弧,就可把⊙O 12等分…….
要点诠释:
画正n边形的方法:(1)将一个圆 ,(2)顺次连结各等分点.
考法01 正多边形的概念
【典例1】如图所示,正五边形的对角线AC和BE相交于点M.
(1)求证:AC∥ED;(2)求证:ME=AE.
【典例2】如图,正方形ABCD内接于⊙O,E为DC的中点,直线BE交⊙O于点F,若⊙O的半径为,则BF的长为 .
【即学即练1】同一个圆的内接正六边形和外切正六边形的周长的比等于( )
A.3:4 B.:2 C.2: D.1:2
考法02 正多边形和圆的有关计算
【典例3】如图,AG是正八边形ABCDEFGH的一条对角线.
(1)在剩余的顶点B、C、D、E、F、H中,连接两个顶点,使连接的线段与AG平行,并说明理由;
(2)两边延长AB、CD、EF、GH,使延长线分别交于点P、Q、M、N,若AB=2,求四边形PQMN的面积.
【典例4】如图所示,圆内接△ABC中,AB=BC=CA,OD、OE为⊙O的半径,OD⊥BC于点F,OE⊥AC于点G,求证:阴影部分四边形OFCG的面积是△ABC的面积的.
【即学即练2】如下图,若∠DOE保持120°角度不变,求证:当∠DOE绕着O点旋转时,由两条半径和△ABC的两条边围成的图形,图中阴影部分的面积始终是△ABC的面积的.
题组A 基础过关练
1.若一个正多边形的一个内角是120°,则这个正多边形的边数是( )
A.9 B.8 C.6 D.4
2.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是( )
A.2 cm B.cm C. cm D.1cm
3.已知圆的半径是,则该圆的内接正六边形的面积是( )
A. B. C. D.
4.中华人民共和国国旗上的五角星,它的五个锐角的度数和是( )
A.50° B.100° C.180° D.200°
5.将边长为3cm的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( )
A.cm2 B.cm2 C.cm2 D.cm2
6.如图,在△PQR是⊙O的内接三角形,四边形ABCD是⊙O的内接正方形,BC∥QR,则∠AOR=( )
A.60° B.65° C.72° D.75°
7.已知等边三角形的内切圆半径,外接圆半径和高的比是( )
A.1:2: B.2:3:4 C.1::2 D.1:2:3
题组B 能力提升练
1.正六边形的外接圆的半径与内切圆的半径之比为_____.
2.半径相等的圆内接正三角形、正方形、正六边形的边长之比为________.
3.如图,有一圆内接正八边形ABCDEFGH,若△ADE的面积为10,则这个正八边形的面积为
4.如图,正六边形内接于圆O,圆O的半径为10,则图中阴影部分的面积为_________.
5.如图,已知正六边形 ABCDEF 的边长是 5,点 P 是 AD 上的一动点,则 PE+PF 的最小值是_____.
6.如图,有一个圆O和两个正六边形T1,T2.T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).若设T1,T2的边长分别为a,b,圆O的半径为r,则r:a=____;r:b=____;正六边形T1,T2的面积比S1:S2的值是____.
7.如图,在边长为3的正方形ABCD中,圆O1与圆O2外切,且圆O1分别与DA、DC边相切,圆O2分别与BA、BC边相切,则圆心距O1O2为_____.
题组C 培优拔尖练
1.如图,正六边形的边长为,点为六边形内任一点.则点到各边距离之和是多少?
2.如图,为等边的外接圆,半径为2,点在劣弧上运动(不与点重合),连接,,.
(1)求证:是的平分线;
(2)四边形的面积是线段的长的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点分别在线段,上运动(不含端点),经过探究发现,点运动到每一个确定的位置,的周长有最小值,随着点的运动,的值会发生变化,求所有值中的最大值.
3.(本小题满分12分 )如图①、②、③,正三角形ABC、正方形ABCD、正五边形ABCDE分别是⊙O的内接三角形、内接四边形、内接五边形,点M、N分别从点B、C开始,以相同的速度在⊙O上逆时针运动.
(1)求图①中∠APN的度数(写出解题过程);
(2)写出图②中∠APN的度数和图 ③中∠APN的度数
( 3)试探索∠APN的度数与正多边形边数n的关系(直接写答案)
4.阅读下列材料:
已知:如图1,等边△A1A2A3内接于⊙O,点P是上的任意一点,连接PA1,PA2,PA3,可证:PA1+PA2=PA3,从而得到:是定值.
(1)以下是小红的一种证明方法,请在方框内将证明过程补充完整;
证明:如图1,作∠PA1M=60°,A1M交A2P的延长线于点M.
∵△A1A2A3是等边三角形,
∴∠A3A1A2=60°,
∴∠A3A1P=∠A2A1M
又A3A1=A2A1,∠A1A3P=∠A1A2P,
∴△A1A3P≌△A1A2M
∴PA3=MA2=PA2+PM=PA2+PA1.
∴,是定值.
(2)延伸:如图2,把(1)中条件“等边△A1A2A3”改为“正方形A1A2A3A4”,其余条件不变,请问:还是定值吗?为什么?
(3)拓展:如图3,把(1)中条件“等边△A1A2A3”改为“正五边形A1A2A3A4A5”,其余条件不变,则= (只写出结果).