高中数学苏教版 (2019)选择性必修第二册8.2离散型随机变量及其分布列习题
展开第8章 概率
8.2.4超几何分布
课程标准 | 重难点 |
1.结合生活中的实例,了解超几何分布. 2.了解超几何分布的均值及其意义. | 重点:超几何分布的理解; 难点:超几何分布的均值及其意义. |
知识点01 超几何分布
定义:一般地,若有总数为N件的甲、乙两类物品,其中甲类有M件(M<N),从所有物品中随机取出n 件(n≤N),则这n件中所含甲类物品数X是一个离散型随机变量,X能取不小于t且不大于s的所有自然数,其中s是M与n中的较小者,t在n不大于乙类物品件数(即n≤N-M)时取0,否则t取n减乙类物品件数之差(即t=n-(N-M)),而且P(X=k)=,k=t,t+1,...s,X称为服从参数为N,n,M的超几何分布,记作X~H(N,n,M).
注意:对超几何分布的理解
(1)超几何分布的模型是不放回抽样;
(2)超几何分布中的参数是M,N,n;
(3)超几何分布可解决产品中的正品和次品、盒中的白球和黑球、同学中的男和女等问题,往往由差异明显的两部分组成.
注意:超几何分布与二项分布的区别∶
(1)超几何分布需要知道总体的容量,而二项分布不需要;
(2)超几何分布是不放回抽样,而二项分布是放回抽样(独立重复),当总体的容量非常大时,超几何分布近似于二项分布.
超几何分布的均值:若X服从参数为N,n,M的超几何分布,即X~H(N,n,M),则E(X)=
【即学即练1】(2021·全国·)(多选)关于超几何分布下列说法正确的是( )
A.超几何分布的模型是不放回抽样 B.超几何分布的总体里可以只有一类物品
C.超几何分布中的参数是,, D.超几何分布的总体往往由差异明显的两部分组成
【即学即练2】(2022·全国·高三专题练习)下列随机事件中的随机变量服从超几何分布的是( )
A.将一枚硬币连抛3次,记正面向上的次数为
B.从7男3女共10名学生干部中随机选出5名学生干部,记选出女生的人数为
C.某射手的射击命中率为0.8,现对目标射击1次,记命中的次数为
D.盒中有4个白球和3个黑球,每次从中摸出1个球且不放回,记第一次摸出黑球时摸取的次数为
◆考点01 超几何分布的分布列
【典例1】(2022·湖北孝感·高二期末)已知某批产品共20件,其中二等品有8件.从中任意抽取2件,表示取出的2件产品中二等品的件数,试填写下列关于的分布列.
0 | 1 | 2 | |
___________ | ___________ |
【典例2】(2022·全国·高二课时练习)某校高一、高二的学生组队参加辩论赛,高一推荐了3名男生、2名女生,高二推荐了3名男生、4名女生.推荐的学生一起参加集训,最终从参加集训的男生中随机抽取3人,女生中随机抽取3人组成代表队.
(1)求高一至少有1名学生入选代表队的概率;
(2)某场比赛前,从代表队的6名队员中随机抽取4人参赛,设X表示参赛的男生人数,求X的分布列.
【典例3】(2022·北京延庆·高二期末)袋中有个白球、个黑球,从中随机地连续抽取次,每次取个球.
(1)若每次抽取后都放回,求恰好取到个黑球的概率;
(2)若每次抽取后都不放回,设取到黑球的个数为,求的分布列.
◆考点02 超几何分布的概率
【典例4】(辽宁·高考真题)设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰有6个红球的概率为( )
A. B. C. D.
【典例5】(2022·全国·高三专题练习)把半圆弧分成等份,以这些分点(包括直径的两端点)为顶点,作出三角形,从中任取个不同的三角形,则这个不同的三角形中钝角三角形的个数不少于的概率为______.
◆考点03 超几何分布的均值
【典例6】(2022·河南南阳·)袋中有2个红球,m个蓝球和n个绿球,若从中不放回地任取2个球,记取出的红球数量为X,则,且取出一红一蓝的概率为,若有放回地任取2个球,则取出一蓝一绿的概率为( )
A. B. C. D.
【典例7】(2022·湖北·十堰东风高级中学)一个箱子中有6个大小相同产品,其中4个正品、2个次品,从中任取3个产品,记其中正品的个数为随机变量,则的均值___________.
◆考点04 超几何分布的方差
【典例8】(2022·吉林油田第十一中学)冬奥会志愿者有6名男同学,4名女同学.在这10名志愿者中,三名同学来自北京大学,其余7名同学来自北京邮电大学,北京交通大学等其他互不相同的7所大学.现从这10名志愿者中随机选取3名同学,到机场参加活动.(每位同学被选中的可能性相等).
(1)求选出的3名同学是来自互不相同的大学的概率;
(2)设X为选出的3名同学中女同学的人数,求随机变量X的期望和方差.
【典例9】(2022·北京·)某学校在寒假期间安排了“垃圾分类知识普及实践活动”.为了解学生的学习成果,该校从全校学生中随机抽取了50名学生作为样本进行测试,记录他们的成绩,测试卷满分100分,将数据分成6组:,,,,,,并整理得到如下频率分布直方图:
(1)若全校学生参加同样的测试,试估计全校学生的平均成绩(每组成绩用中间值代替);
(2)在样本中,从其成绩在80分及以上的学生中随机抽取3人,用表示其成绩在中的人数,求的分布列及数学期望;
(3)在(2)抽取的3人中,用表示其成绩在的人数,试判断方差与的大小.(直接写结果)
题组A 基础过关练
一、单选题
1.某冷饮店的冰淇淋在一天中销量为200个,三种口味各自销量如表所示:把频率视作概率,从卖出的冰淇淋中随机抽取10个,记其中草莓味的个数为X,则( )
冰淇淋口味 | 草莓味 | 巧克力味 | 原味 |
销量(个) | 40 | 60 | 100 |
A.5 B.3 C.2 D.1
2.已知6件产品中有2件次品,4件正品,检验员从中随机抽取3件进行检测,记取到的正品数为X,则( )
A.2 B.1 C. D.
3.在含有3件次品的50件产品中,任取2件,则至少取到1件次品的概率为( )
A. B. C. D.
4.学校要从10名候选人中选2名同学组成学生会,其中高二(1)班有4名候选人,假设每名候选人都有相同的机会被选到,若表示选到高二(1)班的候选人的人数,则( )
A. B. C. D.
5.某贫困县辖有15个小镇中有9个小镇交通比较方便,有6个不太方便现从中任意选取10个小镇,其中有X个小镇交通不太方便,下列概率中等于的是
A. B.
C. D.
6.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于
A. B. C. D.
二、多选题
7.某工厂进行产品质量抽测,两位员工随机从生产线上各抽取数量相同的一批产品,已知在两人抽取的一批产品中均有5件次品,员工A从这一批产品中有放回地随机抽取3件产品,员工B从这一批产品中无放回地随机抽取3件产品.设员工A抽取到的3件产品中次品数量为X,员工B抽取到的3件产品中次品数量为Y,,1,2,3.则下列判断正确的是( )
A.随机变量X服从二项分布 B.随机变量Y服从超几何分布
C. D.
8.下列说法正确的有( )
A.若随机变量X的数学期望,则
B.若随机变量Y的方差
C.将一枚硬币抛掷3次,记正面向上的次数为,则服从二项分布
D.从7男3女共10名学生干部中随机选取5名学生干部,记选出女学生干部的人数为,则服从超几何分布
9.在一个袋中装有大小相同的4黑球,6个白球,现从中任取3个小球,设取出的3个小球中白球的个数为,则下列结论正确的是( )
A.随机变量服从超几何分布
B.随机变量服从二项分布
C.
D.
10.某人参加一次测试,在备选的10道题中,他能答对其中的5道.现从备选的10题中随机抽出3题进行测试,规定至少答对2题才算合格.则下列选项正确的是( )
A.答对0题和答对3题的概率相同,都为
B.答对1题的概率为
C.答对2题的概率为
D.合格的概率为
三、填空题
11.已知口袋中装有n(n>1)个红球和2个黄球,从中任取2个球(取到每个球都是等可能的),用随机变量X表示取到黄球的个数,X的分布列如下表所示,则X的数学期望为_________.
X | 0 | 1 | 2 |
P | a | b |
12.在含有5件次品的10件产品中,任取4件,则取到的次品数X的分布列为P(X=r)=________.
13.若一个随机变量的分布列为,其中则称服从超几何分布,记为,并将记为,则___________.
四、解答题
14.某运动品牌旗舰店在双十一线下促销期间,统计了5个城市的专卖店销售数据如下:
款式/专卖店 | 甲 | 乙 | 丙 | 丁 | 戊 |
男装 | 60 | 60 | 130 | 80 | 110 |
女装 | 120 | 90 | 130 | 60 | 50 |
(1)若分别从甲、乙两家店的销售数据记录中各抽一条进行追踪调查,求抽中的两条记录中至少有一次购买的是男装的概率;
(2)现从这5家店中任选3家进行抽奖活动,用表示其中男装销量超过女装销量的专卖店个数,求随机变量的分布列和数学期望.
15.北京时间2月20日,北京2022年冬奥会闭幕式在国家体育场举行.北京2022年冬奥会的举行激发了人们的冰雪兴趣,带火了冬季旅游,某旅游平台计划在注册会员中调查对冰雪运动的爱好情况,其中男会员有1000名,女会员有800名,用分层抽样的方法随机抽取36名会员进行详细调查,调查结果发现抽取的这36名会员中喜欢冰雪运动的男会员有8人,女会员有4人.
(1)在1800名会员中喜欢冰雪运动的估计有多少人?
(2)在抽取的喜欢冰雪运动的会员中任选3人,记选出的3人中男会员有人,求随机变量的分布列与数学期望.
五、双空题
16.盒子里装有同样大小的4个白球和3个黑球,甲先从中取2球(不放回),之后乙再从盒子中取1个球.(1)则甲所取的2个球为同色球的概率为____________;(2)设事件为“甲所取的2个球为同色球”,事件为“乙所取的球与甲所取的球不同色”,则在事件发生的条件下,求事件发生的概率____________.
17.袋中有大小形状相同的红球、黑球和白球共9个,其中白球有2个,从袋中任意不放回地取出2球,至少取到1个红球的概率为,则红球有______________个,在此情况下,若从袋中任意不放回地取出3球,记取到黑球的个数为,则随机变量的数学期望____________
题组B 能力提升练
一、单选题
1.某班级要从名男生,名女生中随机选取人参加学校组织的学习小组活动,设选取的女生人数为,则( )
A. B. C. D.
2.在一个袋中装有质地大小一样的6个黑球,4个白球,现从中任取4个小球,设取的4个小球中白球的个数为X,则下列结论正确的是( )
A. B.随机变量服从二项分布
C.随机变量服从几何分布 D.
3.一个袋子中100个大小相同的球,其中有40个黄球,60个白球,从中不放回地随机摸出20个球作为样本,用随机变量表示样本中黄球的个数,则服从( )
A.二项分布,且 B.两点分布,且
C.超几何分布,且 D.超几何分布,且
4.《易系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中.如图,白圈为阳数,黑点为阴数.若从这个数中任取个数,则这个数中至少有个阳数的概率为( )
A. B. C. D.
5.口袋中有相同的黑色小球n个,红、白、蓝色的小球各一个,从中任取4个小球.ξ表示当n=3时取出黑球的数目,η表示当n=4时取出黑球的数目.则下列结论成立的是( )
A.E(ξ)<E(η),D(ξ)<D(η) B.E(ξ)>E(η),D(ξ)<D(η)
C.E(ξ)<E(η),D(ξ)>D(η) D.E(ξ)>E(η),D(ξ)>D(η)
6.某地个贫困村中有个村是深度贫困,现从中任意选个村,下列事件中概率等于的是( )
A.至少有个深度贫困村 B.有个或个深度贫困村
C.有个或个深度贫困村 D.恰有个深度贫困村
二、多选题
7.2022年冬奥会在北京举办,为了弘扬奥林匹克精神,上饶市多所中小学开展了冬奥会项目科普活动.为了调查学生对冬奥会项目的了解情况,在本市中小学中随机抽取了10所学校中的部分同学,10所学校中了解冬奥会项目的人数如图所示:
若从这10所学校中随机选取3所学校进行冬奥会项目的宣讲活动,记为被选中的学校中了解冬奥会项目的人数在30以上的学校所数,则下列说法中正确的是( )
A.的可能取值为0,1,2,3 B.
C. D.
8.已知10件产品中存在次品,从中抽取2件,记次品数为,,,则下列说法正确的是( )
A.这10件产品的次品率为20% B.次品数为8件
C. D.
9.下列结论正确的有( )
A.公共汽车上有10位乘客,沿途5个车站,乘客下车的可能方式有种.
B.两位男生和两位女生随机排成一列,则两位女生不相邻的概率是
C.若随机变量服从二项分布,则
D.10个产品有3个次品,从中抽出2个,抽出次品个数的期望0.6个
三、填空题
10.盒中有2个白球,3个黑球,从中任取3个球,以表示取到白球的个数,表示取到黑球的个数.给出下列各项:
①,;②;③;④.
其中正确的是________.(填上所有正确项的序号)
11.3月5日为“学雷锋纪念日”,某校将举行“弘扬雷锋精神做全面发展一代新人”知识竞赛,某班现从6名女生和3名男生中选出5名学生参赛,要求每人回答一个问题,答对得2分,答错得0分,已知6名女生中有2人不会答所有题目,只能得0分,其余4人可得2分,3名男生每人得2分的概率均为,现选择2名女生和3名男生,每人答一题,则该班所选队员得分之和为6分的概率__________.
四、解答题
12.某校举办传统文化知识竞赛,从该校参赛学生中随机抽取名学生,竞赛成绩的频率分布表如下:
竞赛成绩 | |||||
频率 |
(1)估计该校学生成绩的平均数(同一组中的数据用该组区间的中点值作代表);
(2)已知样本中竞赛成绩在的男生有人,从样本中竞赛成绩在的学生中随机抽取人进行调查,记抽取的男生人数为,求的分布列及期望.
13.随着网络的快速发展,电子商务成为新的经济增长点,市场竞争也日趋激烈,除了产品品质外,客服团队良好的服务品质也是电子商务的核心竞争力,衡量一位客服工作能力的重要指标—询单转化率,是指咨询该客服的顾客中成交人数占比,可以看作一位顾客咨诲该客服后成交的概率,已知某网店共有10位客服,按询单率分为,两个等级(见表),且视,等级客服的询单转化率分别为对应区间的中点值.
等级 | ||
询单转化率 | ||
人数 |
(1)求该网店询单转化率的平均值;
(2)现从这10位客服中任意抽取4位进行培训,求这4人的询单转化率的中位数不低于的概率;
(3)已知该网店日均咨询顾客约为1万人,为保证服务质量,每位客服日接待顾客的数量不超过1300人.在网店的前期经营中,进店咨询的每位顾客由系统等可能地安排给任一位客服接待,为了提升店铺成交量,网店实施改革,经系统调整,进店咨询的每位顾客被任一位A等级客服接待的概率为a,被任一位B等级客服接待的概率为b,若希望改革后经咨询日均成交人数至少比改革前增加300人,则a应该控制在什么范围?
五、双空题
14.袋子中有个大小相同的球,其中个红球,个白球.每次从中任取个球,然后放回个红球.设第一次取到白球的个数为,则的数学期望___________;第二次取到个白球个红球的概率为___________.
题组C 培优拔尖练
1.设随机变量(且),最大时,( )
A.1.98 B.1.99 C.2.00 D.2.01
2.中国男子篮球职业联赛(CBA)始于1995年,至今已有28个赛季,根据传统,在每个赛季总决赛之后,要举办一场南北对抗的全明星比赛,其中三分王的投球环节最为吸引眼球,三分王投球的比赛规则如下:一共有五个不同角度的三分点位,每个三分点位有5个球(前四个是普通球,最后一个球是花球),前四个球每投中一个得1分,投不中的得0分,最后一个花球投中得2分,投不中得0分.全明星参赛球员甲在第一个角度的三分点开始投球,已知球员甲投球的命中率为,且每次投篮是否命中相互独立.
(1)记球员甲投完1个普通球的得分为X,求X的方差D(X);
(2)若球员甲投完第一个三分点位的5个球后共得到了2分,求他是投中了花球而得到了2分的概率;
(3)在比赛结束后与球迷的互动环节中,将球员甲在前两个三分点位使用过的10个篮球对应的小模型放入箱中,由幸运球迷从箱中随机摸出5个小模型,并规定,摸出一个花球小模型计2分,摸出一个普通球小模型计1分,求该幸运球迷摸出5个小模型后的总计分Y的数学期望.
苏教版 (2019)选择性必修第二册8.2离散型随机变量及其分布列精品复习练习题: 这是一份苏教版 (2019)选择性必修第二册8.2离散型随机变量及其分布列精品复习练习题,文件包含823824二项分布与超几何分布原卷版docx、823824二项分布与超几何分布解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
苏教版 (2019)选择性必修第二册8.2离散型随机变量及其分布列精品课后测评: 这是一份苏教版 (2019)选择性必修第二册8.2离散型随机变量及其分布列精品课后测评,文件包含824超几何分布原卷版docx、824超几何分布解析版docx等2份试卷配套教学资源,其中试卷共33页, 欢迎下载使用。
【同步讲义】(苏教版2019)高中数学选修第二册:8.2.4超几何分布 讲义: 这是一份【同步讲义】(苏教版2019)高中数学选修第二册:8.2.4超几何分布 讲义,文件包含同步讲义苏教版2019高中数学选修第二册824超几何分布原卷版docx、同步讲义苏教版2019高中数学选修第二册824超几何分布解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。