![北师大版数学八年级上册《平行线的证明》全章复习与巩固(提高)知识讲解 (含答案)第1页](http://img-preview.51jiaoxi.com/2/3/14075464/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册《平行线的证明》全章复习与巩固(提高)知识讲解 (含答案)第2页](http://img-preview.51jiaoxi.com/2/3/14075464/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册《平行线的证明》全章复习与巩固(提高)知识讲解 (含答案)第3页](http://img-preview.51jiaoxi.com/2/3/14075464/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版数学八年级上册 知识讲解+巩固练习(基础版+提高版) (含答案)
北师大版数学八年级上册《平行线的证明》全章复习与巩固(提高)知识讲解 (含答案)
展开
这是一份北师大版数学八年级上册《平行线的证明》全章复习与巩固(提高)知识讲解 (含答案),共7页。
《平行线的证明》全章复习与巩固(提高)知识讲解【学习目标】1. 了解定义及命题的概念与构成,并能通过证明或举反例判定命题的真假;2. 区别平行线的判定与性质,并能灵活运用;3. 理解并能灵活运用三角形的内角和定理及其推论.【知识网络】【要点梳理】要点一、定义、命题及证明1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.2.命题:判断一件事情的句子,叫做命题.
要点诠释:(1)命题一般由条件和结论组成.
(2)正确的命题称为真命题,不正确的命题称为假命题.
(3)公认的真命题叫做公理. (4) 经过证明的真命题称为定理.3.证明: 除了公理外,其它的真命题的正确性都要通过推理的方法进行证实,这种演绎推理的过程叫做证明.
要点诠释:实验、观察、操作所得出的结论不一定都正确,必须推理论证后才能得出正确的结论.要点二、平行线的判定与性质1.平行线的判定判定方法1:同位角相等,两直线平行.判定方法2:内错角相等,两直线平行.判定方法3:同旁内角互补,两直线平行.要点诠释:根据平行线的定义和平行公理的推论,平行线的判定方法还有:(1)平行线的定义:在同一平面内,如果两条直线没有交点(不相交),那么两直线平行.(2)如果两条直线都平行于第三条直线,那么这两条直线平行(平行线的传递性).(3)在同一平面内,垂直于同一直线的两条直线平行.(4)平行公理:经过直线外一点,有且只有一条直线与这条直线平行.2.平行线的性质性质1:两直线平行,同位角相等;性质2:两直线平行,内错角相等;性质3:两直线平行,同旁内角互补.要点诠释:根据平行线的定义和平行公理的推论,平行线的性质还有:(1)若两条直线平行,则这两条直线在同一平面内,且没有公共点.(2)如果一条直线与两条平行线中的一条直线垂直,那么它必与另一条直线垂直.要点三、三角形的内角和定理及推论三角形的内角和定理:三角形的内角和等于180°. 推论:(1)三角形的一个外角等于和它不相邻的两个内角的和. (2)三角形的一个外角大于任何一个和它不相邻的内角.要点诠释:(1)由一个公理或定理直接推出的真命题,叫做这个公理或定理的推论.(2)推论可以当做定理使用.【典型例题】类型一、定义、命题及证明1. 我们知道任何一个命题都由条件和结论两部分组成,如果我们把一个命题的条件变结论,结论变条件,那么所得的是不是一个命题?试举例说明.【答案与解析】解:是一个命题,例如“对顶角相等”条件结论互换就变为“相等的角是对顶角”.【总结升华】如果将一个命题的条件与结论互换,则得到这个命题的逆命题,但原命题正确,逆命题不一定正确.举一反三:【变式】下列命题中,真命题有( ) .① 若x=a,则x2-(a+b)x+ab=0② 直线外一点到这条直线的垂线段,叫做这个点到这条直线的距离③ 如果 =0,那么x=±2 ④ 如果a=b,那么a3=b3 A.1个 B.2个 C.3个 D.4个【答案】C2.如图所示,O是直线AB上一点,射线OC、OD在AB的两侧,且∠AOC=∠BOD,试证明∠AOC与∠BOD是对顶角.【答案】 证明:因为∠AOC+∠COB=180°(平角定义), 又因为∠AOC=∠BOD(已知), 所以∠BOD+∠COB=180°,即∠COD=180°. 所以C、O、D三点在一条直线上(平角定义), 即直线AB、CD相交于点O, 所以∠AOC与∠BOD是对顶角(对顶角定义). 【总结升华】证三点共线的方法,通常采用证这三点组成的角为平角,即∠COD=180°.类型二、平行线的性质与判定3. (2020春•胶州市期中)将一副三角板中的两根直角顶点C叠放在一起(如图①),其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)若∠BCD=150°,求∠ACE的度数;(2)试猜想∠BCD与∠ACE的数量关系,请说明理由;(3)若按住三角板ABC不动,绕顶点C转动三角板DCE,试探究∠BCD等于多少度时,CD∥AB,并简要说明理由.【思路点拨】(1)由∠BCD=150°,∠ACB=90°,可得出∠DCA的度数,进而得出∠ACE的度数;(2)根据(1)中的结论可提出猜想,再由∠BCD=∠ACB+∠ACD,∠ACE=∠DCE﹣∠ACD可得出结论;(3)根据平行线的判定定理,画出图形即可求解.【答案与解析】解:(1)∵∠BCA=∠ECD=90°,∠BCD=150°,∴∠DCA=∠BCD﹣∠BCA=150°﹣90°=60°,∴∠ACE=∠ECD﹣∠DCA=90°﹣60°=30°;(2)∠BCD+∠ACE=180°,理由如下:∵∠BCD=∠ACB+∠ACD=90°+∠ACD,∠ACE=∠DCE﹣∠ACD=90°﹣∠ACD,∴∠BCD+∠ACE=180°;(3)当∠BCD=120°或60°时,CD∥AB.如图②,根据同旁内角互补,两直线平行,当∠B+∠BCD=180°时,CD∥AB,此时∠BCD=180°﹣∠B=180°﹣60°=120°;如图③,根据内错角相等,两直线平行,当∠B=∠BCD=60°时,CD∥AB. 【总结升华】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.熟练掌握定理并且能够准确识图是解题的关键.4. (2020春•海珠区期末)如图,已知AD∥BC,∠1=∠2,求证:∠3+∠4=180°. 【思路点拨】欲证∠3+∠4=180°,需证BE∥DF,而由AD∥BC,易得∠1=∠3,又∠1=∠2,所以∠2=∠3,即可求证.【答案与解析】证明:∵AD∥BC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BE∥DF,∴∠3+∠4=180°.【总结升华】此题考查平行线的判定和性质:同位角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补.要灵活应用. 举一反三:【变式1】(2020春•大名)如图:AD∥BC,∠DAC=60°,∠ACF=25°,∠EFC=145°,则直线EF与BC的位置关系是 . 【答案】解:平行.∵AD∥BC,∴∠ACB=∠DAC=60°,∵∠ACF=25°,∴∠FCB=35°,∴∠EFC+∠FCB=145°+35°=180°,∴EF∥BC,故答案为:平行.【变式2】已知:如图,∠ABC=∠ADC,BF、DE分别平分∠ABC与∠ADC,且∠1=∠3.求证:AB∥DC.【答案】证明:∵∠ABC=∠ADC,∴(等式性质).又∵BF、DE分别平分∠ABC与∠ADC,∴∠1=,∠2=(角平分线的定义).∴∠1=∠2 (等量代换).又∵∠1=∠3(已知),∴∠2=∠3(等量代换).∴AB∥DC(内错角相等,两直线平行).类型三、三角形的内角和定理及推论5.如图,P是△ABC 内一点,请用量角器量出∠ABP.∠ACP.∠A和∠BPC的大小,再计算一下,∠ABP+∠ACP+∠A是多少度?这三个角的和与∠BPC有什么关系?你能用学到的知识来解释其中的道理吗?你能判断∠BPC和∠A的大小吗? 【答案与解析】解:∠ABP+∠ACP+∠A=∠BPC,∠BPC>∠A。证明:如下图,延长BP到D,则∠PDC=∠A+∠∠ABP,∠PDC>∠A. 同理,∠BPC=∠PDC+∠ACP,∠BPC>∠PDC.所以∠BPC=∠ABP+∠ACP+∠A ,∠BPC>∠A .
举一反三:【变式1】如图,△ABC的两外角平分线交于点P,易证∠P=90°-∠A;△ABC两内角的平分线交于点Q,易证∠BQC=90°+∠A;那么△ABC的内角平分线BM与外角平分CM的夹角∠M=_____∠A.【答案】【变式2】如图,E是BC延长线上的点,∠1=∠2.求证:∠BAC>∠B. 【答案】证明:∵∠2=∠B+∠D ∴∠B=∠2-∠D 又∵∠BAC=∠1+∠D ∠1=∠2 ∴∠BAC>∠B类型四、实际应用6.手工制作课上,老师先将一张长方形纸片折叠成如图所示的那样,若折痕与一条边BC的夹角∠EFB=30°,你能说出∠EGF的度数吗?【思路点拨】长方形的对边是平行的,所以AD∥BC,可得∠DEF=∠EFG=30°,又因为折后重合部分相等,所以∠GEF=∠DEF=30°,所以∠DEG=2∠DEF=60°,又因为两直线平行,同旁内角互补,所以∠EGC=180°-∠DEG,问题可解.【答案与解析】解:因为AD∥BC(已知),所以∠DEF=∠EFG=30°(两直线平行,内错角相等).因为∠GEF=∠DEF=30°(对折后重合部分相等),所以∠DEG=2∠DEF=60°.所以∠EGC=180°-∠DEG=180°-60°=120°(两直线平行,同旁内角互补).【总结升华】本题利用了:(1)折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;(2)平行线的性质.
![文档详情页底部广告位](http://img.51jiaoxi.com/images/257d7bc79dd514896def3dc0b2e3f598.jpg)