数学七年级上册2.1 有理数同步测试题
展开
这是一份数学七年级上册2.1 有理数同步测试题,共8页。
《有理数及其运算》全章复习与巩固(提高) 【学习目标】 1.理解有理数及其运算的意义,提高运算能力.
2.能用数轴上的点表示有理数,会比较有理数的大小;借助数轴理解相反数和绝对值的意义,会求有理数的相反数与绝对值.
3.体会转化、归纳等思想;掌握有理数的加、减、乘、除、乘方及混合运算并能解决简单的实际问题.4. 会用科学记数法表示数.【知识网络】【要点梳理】要点一、有理数的相关概念 1.有理数的分类: (1)按定义分类: (2)按性质分类:要点诠释:(1)用正数、负数表示相反意义的量;(2)有理数“0”的作用:作用举例表示数的性质0是自然数、是有理数表示没有3个苹果用+3表示,没有苹果用0表示表示某种状态 表示冰点表示正数与负数的界点0非正非负,是一个中性数 2.数轴:规定了原点、正方向和单位长度的直线.要点诠释:(1)一切有理数都可以用数轴上的点表示出来,数轴上的点不都表示的是有理数,如.(2)在数轴上,右边的点所对应的数总比左边的点所对应的数大.3.相反数:只有符号不同的两个数互称为相反数,0的相反数是0. 要点诠释:(1)一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的.(2)求任意一个数的相反数,只要在这个数的前面添上“”号即可.(3)多重符号的化简:数字前面“”号的个数若有偶数个时,化简结果为正,若有奇数个时,化简结果为负.4.绝对值:(1)代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 数a的绝对值记作. (2)几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离.要点二、有理数的运算 1 .法则:(1)加法法则:①同号两数相加,取相同的符号,并把绝对值相加.②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.③一个数同0相加,仍得这个数.(2)减法法则:减去一个数,等于加这个数的相反数.即a-b=a+(-b) .(3)乘法法则:①两数相乘,同号得正,异号得负,并把绝对值相乘.②任何数同0相乘,都得0.(4)除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a÷b=a·(b≠0) . (5)乘方运算的符号法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂都是正数,0的任何非零次幂都是0. (6)有理数的混合运算顺序:①先乘方,再乘除,最后加减;②同级运算,从左到右进行;③如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.要点诠释:“奇负偶正”口诀的应用:(1)多重负号的化简,这里奇偶指的是“-”号的个数,例如:-[-(-3)]=-3,-[+(-3)]=3.(2)有理数乘法,当多个非零因数相乘时,这里奇偶指的是负因数的个数,正负指结果中积的符号,例如:(-3)×(-2)×(-6)=-36,而(-3)×(-2)×6=36.(3)有理数乘方,这里奇偶指的是指数,当底数为负数时,指数为奇数,则幂为负;指数为偶数,则幂为正,例如: , .2.运算律: (1)交换律: ① 加法交换律:a+b=b+a; ②乘法交换律:ab=ba;(2)结合律: ①加法结合律: (a+b)+c=a+(b+c); ②乘法结合律:(ab)c=a(bc) (3)分配律:a(b+c)=ab+ac要点三、有理数的大小比较比较大小常用的方法有:(1)数轴比较法;(2)法则比较法:正数大于0,0大于负数,正数大于负数;两个负数,绝对值大的反而小;(3) 作差比较法.(4)作商比较法;(5)倒数比较法.要点四、科学记数法 把一个大于10的数表示成的形式(其中1≤,是正整数),此种记法叫做科学记数法.例如:200 000=.【典型例题】类型一、有理数相关概念 1.已知x与y互为相反数,m与n互为倒数,|x+y |+(a-1)2=0,求a2-(x+y+mn)a+(x+y)2009+(-mn)2010的值.【思路点拨】 (1)若有理数x与y互为相反数,则x+y=0,反过来也成立. (2)若有理数m与n互为倒数,则mn=1,反过来也成立.【答案与详解】解:因为x与y互为相反数,m与n互为倒数,(a-1)2≥0, 所以x+y=0,mn=1,a=1, 所以a2-(x+y+mn)a+(x+y)2009+(-mn)2010 =a2-(0+1)a+02009+(-1)2010 =a2-a+1. ∵a=1,∴原式=12-1+1=1【总结升华】要全面正确地理解倒数,绝对值,相反数等概念.举一反三:【变式1】选择题(1)已知四种说法: ①|a|=a时,a>0; |a|=-a时, a<0. ②|a|就是a与-a中较大的数. ③|a|就是数轴上a到原点的距离. ④对于任意有理数,-|a|≤a≤|a|. 其中说法正确的个数是( ) A.1 B.2 C.3 D.4 (2)有四个说法: ①有最小的有理数 ②有绝对值最小的有理数 ③有最小的正有理数 ④没有最大的负有理数 上述说法正确的是( ) A.①② B.③④ C.②④ D.①② (3)已知(-ab)3>0,则( ) A.ab<0 B.ab>0 C.a>0且b<0 D.a<0且b<0 (4)若|x-1|+|y+3|+|z-5|=0,则(x+1)(y-3)(z+5)的值是( ) A.120 B.-15 C.0 D.-120 (5)下列各对算式中,结果相等的是( ) A.-a6与(-a)6 B.-a3与|-a|3 C.[(-a)2]3与(-a3)2 D.(ab)3与ab3 【答案】(1)C;(2)C;(3)A;(4)D;(5)C【变式2】(2020•甘南州)在“百度”搜索引擎中输入“姚明”,能搜索到与之相关的网页约27000000个,将这个数用科学记数法表示为( ) A.2.7×105 B. 2.7×106 C. 2.7×107 D. 2.7×108【答案】C. 2.(2016•江西校级模拟)如果m,n互为相反数,那么|m+n﹣2016|=________.【思路点拨】先用相反数的意义确定出m+n=0,从而求出|m+n﹣2016|.【答案】 2016.【详解】解:∵m,n互为相反数,∴m+n=0,∴|m+n﹣2016|=|﹣2016|=2016;故答案为2016.【总结升华】此题是绝对值题,主要考查了绝对值的意义,相反数的性质,熟知相反数的意义是解本题的关键. 类型二、有理数的运算 3.(1) (2) (4)(5)【答案与详解】解:(1)原式(2)原式(3)原式(4)原式(5)【总结升华】有理数的混合运算有很多技巧,如:正、负数分别相加;分数中,同分母或分母有倍数关系的分数结合相加;除法转化为乘法、正向应用乘法分配律:a(b+c)=ab+ac;逆向应用分配律:ab+ac=a(b+c)等.举一反三:
【变式】(1)(2)【答案】解:(1) (2) 4.(2020•铜仁市)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= .【答案】0.【详解】解:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.【总结升华】本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.举一反三:
【变式】用简单方法计算:【答案】解:原式=类型三、数学思想在本章中的应用 5.(1)数形结合思想:已知有理数a、b在数轴上对应点的位置如图所示,且|a|>|b|,求|a|-|a+b|-|b-a|的值. A.2b+a B.2b-a C.a D.b(2)分类讨论思想:已知a是任一有理数,试比较|a|与-2a的大小.(3)转化思想:.【答案与详解】解:(1)从数轴上a、b两点的位置可以看出a<0,b>0,且|a|>|b|,所以|a|-|a+b|-|b-a|=-a+a+b-b+a=a.(2)a可能是正数,0或负数,这就需要分类讨论:当a>0时,|a|=a>0,-2a<0,所以|a|>-2a;当a=0时,|a|=0,-2a=0,所以|a|=-2a;当a<0时,|a|=-a>0,-2a>0,又-a<-2a,所以|a|<-2a.综上所述:当a≥0时, |a|≥-2a;当a<0时,|a|<-2a.(3).【总结升华】在解题中合理利用数学思想,是解决问题的有效手段.数形结合——“以形助数”或“以数解形”使问题简单化,具体化;分类讨论中注意分类的两条原则:分类标准要统一,而且分类要做到不重不漏;转化思想就是把“新知识”转化为“旧知识”,将“未知”转化为“已知”. 类型四、规律探索 6.下面两个多位数1248624…,6248624…都是按照如下方法得到的:将第1位数字乘以2,若积为一位数,将其写在第2位;若积为两位数,则将其个位数字写在第2位.对第2位数字再进行如上操作得到第3位数字……,后面的每一位数字都是由前一位数字进行如上操作得到的.当第1位数字是3时,仍按如上操作得到一个多位数,则这个多位数前100位的所有数字之和是( ). A.495 B.497 C.501 D.503【思路点拨】多位数1248624…是怎么来的?当第1个数字是1时,将第1位数字乘以2得2,将2写在第2位上,再将第2位数字2乘以2得4,将其写在第3位上,将第3位数字4乘以2的8,将8写在第4位上,将第4位数字8乘以2得16,将16的个位数字6写在第5位上,将第5位数字6乘以2得12,将12的个位数字2写在第6位上,再将第6位数字2乘以2得4,将其写在第7位上,以此类推.根据此方法可得到第一位是3的多位数后再求和.【答案】A【详解】按照法则可以看出此数为362 486 248…,后面6248循环,所以前100位的所有数字之和是3+(6+2+4+8)×24+6+2+4=495,所以选A.【总结升华】特例助思,探究规律,这类题主要是通过观察分析,从特殊到一般来总结发现规律,并表示出来.举一反三:【变式】世界上著名的莱布尼茨三角形如图所示,则排在第10行从左边数第3个位置上的数是( )A. B. C. D.【答案】B提示:观察发现:分子总是1,第n行的第一个数的分母就是n,第二个数的分母是第一个数的(n-1)倍,第三个数的分母是第二个数的分母的倍.根据图表的规律,则第10行从左边数第3个位置上的数是.
相关试卷
这是一份初中数学人教版八年级上册13.1.1 轴对称课时训练,共10页。
这是一份初中数学北师大版七年级上册3.3 整式同步练习题,共8页。
这是一份初中数学北师大版七年级上册2.1 有理数巩固练习,共5页。试卷主要包含了选择题,填空题, 解答题等内容,欢迎下载使用。