中考数学一轮综合复习导学案(7)反比例函数
展开中考一轮综合复习导学案(7)
模块七:反比例函数
【教材涉及章节: 初三下第26章 反比例函数 】
涉及到2021大连中考题题:
【知识网络】
【要点梳理】
要点一、反比例函数的概念
一般地,形如 (为常数,)的函数称为反比例函数,其中是自变量,是函数,自变量的取值范围是不等于0的一切实数.
❤重点讲解❤:在中,自变量的取值范围是, ()可以写成()的形式,也可以写成的形式.
要点二、反比例函数解析式的确定
反比例函数解析式的确定方法是待定系数法.由于反比例函数中,只有一个待定系数,因此只需要知道一对的对应值或图象上的一个点的坐标,即可求出的值,从而确定其解析式.
要点三、反比例函数的图象和性质
1.反比例函数的图象
反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与轴、轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.
❤重点讲解❤:
观察反比例函数的图象可得:和的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.
①的图象是轴对称图形,对称轴为两条直线;
②的图象是中心对称图形,对称中心为原点(0,0);
③(k≠0)在同一坐标系中的图象关于轴对称,也关于轴对称.
注:正比例函数与反比例函数,
当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.
2.反比例函数的性质
(1)图象位置与反比例函数性质
当时,同号,图象在第一、三象限,且在每个象限内,随的增大而减小;当时,异号,图象在第二、四象限,且在每个象限内,随的增大而增大.
(2)若点()在反比例函数的图象上,则点()也在此图象上,故反比例函数的图象关于原点对称.
(3)正比例函数与反比例函数的性质比较
正比例函数
反比例函数
解析式
图 像
直线
有两个分支组成的曲线(双曲线)
位 置
,一、三象限;
,二、四象限
,一、三象限
,二、四象限
增减性
,随的增大而增大
,随的增大而减小
,在每个象限,随的增大而减小
,在每个象限,随的增大而增大
(4)反比例函数y=中的意义
①过双曲线(≠0) 上任意一点作轴、轴的垂线,所得矩形的面积为.
②过双曲线(≠0) 上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为.
要点四、应用反比例函数解决实际问题须注意以下几点
1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题.
2.列出函数关系式后,要注意自变量的取值范围.
之间的函数关系式;
(3)直接写出轿车从B地到A地行驶过程中,轿车出发多长时间与货车相距?
【2021中考汇编】
一、选择题
1. (2021•怀化市)如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,AE⊥BC于E点,交BD于M点,反比例函数y=(x>0)的图象经过线段DC的中点N,若BD=4,则ME的长为( )
A.ME= B.ME= C.ME=1 D.ME=
2. (2021•宿迁市)已知双曲线过点(3,)、(1,)、(-2,),则下列结论正确的是( )
A. B. C. D.
3.(江苏省扬州)如图,点P是函数的图像上一点,过点P分别作x轴和y轴的垂线,垂足分别为点A、B,交函数的图像于点C、D,连接、、、,其中,下列结论:①;②;③,其中正确的是( )
A. ①② B. ①③ C. ②③ D. ①
4.(2021•山西)已知反比例函数,则下列描述不正确的是( )
A.图象位于第一、第三象限 B.图象必经过点(4,) C.图象不可能与坐标轴相交 D. y 随 x 的增大而减小
5. (2021•湖北省宜昌市)某气球内充满了一定质量m的气体,当温度不变时,气球内气体的气压p(单位:kPa)是气体体积V(单位:m3)的反比例函数:p=,能够反映两个变量p和V函数关系的图象是( )
A. B. C. D.
6.(2021•四川省达州市)在反比例函数y=(k为常数)上有三点A(x1,y1),B(x2,y2),C(x3,y3),若x1<0<x2<x3,则y1,y2,y3的大小关系为( )
A.y1<y2<y3 B.y2<y1<y3 C.y1<y3<y2 D.y3<y2<y1
7. (2021•四川省乐山市)如图,直线与反比例函数的图象相交于A、两点,线段的中点为点,过点作轴的垂线,垂足为点.直线过原点和点.若直线上存在点,满足,则的值为( )
A. B. 3或 C. 或 D. 3
8. (天津市)若点都在反比例函数的图象上,则的大小关系是( )
A. B. C. D.
9. (2021•浙江省嘉兴市)已知三个点(x1,y1),(x2,y2),(x3,y3)在反比例函数y=的图象上,其中x1<x2<0<x3,下列结论中正确的是( )
A.y2<y1<0<y3 B.y1<y2<0<y3 C.y3<0<y2<y1 D.y3<0<y1<y2
10、(2021•浙江省温州市)如图,点A,B在反比例函数y=(k>0,x>0),AC⊥x轴于点C,BD⊥x轴于点D,连结AE.若OE=1,OC=,AC=AE,则k的值为( )
A.2 B. C. D.2
11. (2021•湖北省荆门市)在同一直角坐标系中,函数y=kx﹣k与y=(k≠0)的大致图象是( )
A.①② B.②③ C.②④ D.③④
12. (2021•湖北省十堰市)如图,反比例函数的图象经过点,过A作轴于点B,连,直线,交x轴于点C,交y轴于点D,若点B关于直线的对称点恰好落在该反比例函数图像上,则D点纵坐标为( )
A. B. C. D.
13. (2021•重庆市A)如图,在平面直角坐标系中,菱形ABCD的顶点D在第二象限,其余顶点都在第一象限,AB∥X轴,AO⊥AD,AO=AD.过点A作AE⊥CD,垂足为E,DE=4CE.反比例函数的图象经过点E,与边AB交于点F,连接OE,OF,EF.若,则k的值为( )
A. B. C. 7 D.
14. (2021•重庆市B)如图,在平面直角坐标系中,矩形ABCD的顶点A,B在x轴的正半轴上,反比例函数y=(k>0,x>0)的图象经过顶点D,分别与对角线AC,边BC交于点E,F,连接EF,AF.若点E为AC的中点,△AEF的面积为1,则k的值为( )
A. B. C.2 D.3
15. (2021•黑龙江省龙东地区)如图,在平面直角坐标系中,菱形的边轴,垂足为,顶点在第二象限,顶点在轴正半轴上,反比例函数的图象同时经过顶点.若点的横坐标为5,,则的值为( )
A. B. C. D.
16. (2021•贵州省贵阳市)已知反比例函数y=(k≠0)的图象与正比例函数y=ax(a≠0)的图象相交于A,B两点,若点A的坐标是(1,2),则点B的坐标是( )
A.(﹣1,2) B.(1,﹣2) C.(﹣1,﹣2) D.(2,1)
17. (2021•江苏省无锡市)8.一次函数y=x+n的图象与x轴交于点B,与反比例函数y=(m>0)的图象交于点A(1,m),且△AOB的面积为1,则m的值是( )
A.1 B.2 C.3 D.4
18 . (2021•内蒙古包头市)如图,在平面直角坐标系中,矩形OABC的OA边在x轴的正半轴上,OC边在y轴的正半轴上,点B的坐标为(4,2),反比例函数的图象与BC交于点D,与对角线OB交于点E,与AB交于点F,连接OD,DE,EF,DF.下列结论:①;②;③;④.其中正确的结论有( )
A. 4个 B. 3个 C. 2个 D. 1个
19. (2021•内蒙古通辽市)定义:一次函数y=ax+b的特征数为[a,b],若一次函数y=﹣2x+m的图象向上平移3个单位长度后与反比例函数y=﹣的图象交于A,B两点,且点A,B关于原点对称,则一次函数y=﹣2x+m的特征数是( )
A.[2,3] B.[2,﹣3] C.[﹣2,3] D.[﹣2,﹣3]
二.填空题
1. (2021•甘肃省定西市)若点A(﹣3,y1),B(﹣4,y2)在反比例函数y=的图象上,则y1 y2.(填“>”或“<”或“=”)
2. (2021•湖北省武汉市)已知点A(a,y1),B(a+1,y2)在反比例函数y=(m是常数)的图象上,且y1<y2,则a的取值范围是 .
3. (2021•株洲市)点、是反比例函数图像上的两点,满足:当时,均有,则的取值范围是__________.
4.(2021•江苏省南京市)如图,正比例函数与函数的图像交于A,B两点,轴,轴,则________.
5. (2021•宿迁市)如图,点A、B在反比例函数的图像上,延长AB交轴于C点,若△AOC的面积是12,且点B是AC的中点,则 =__________.
6. (2021•四川省广元市)如图,点在反比例函数的图象上,点M在x轴的正半轴上,点N在y轴的负半轴上,且.点是线段上一动点,过点A和P分别作x轴的垂线,垂足为点D和E,连接、.当时,x的取值范围是________.
7. (2021•浙江省绍兴市)如图,在平面直角坐标系中,正方形ABCD的顶点A在x轴正半轴上,C在第一象限,顶点D的坐标(,2),反比例函数y=(常数k>0,x>0)的图象恰好经过正方形ABCD的两个顶点,则k的值是 .
8. (2021•湖北省荆门市)如图,在平面直角坐标系中,Rt△OAB斜边上的高为1,∠AOB=30°,将Rt△OAB绕原点顺时针旋转90°得到Rt△OCD,点A的对应点C恰好在函数y=(k≠0)的图象上,若在y=的图象上另有一点M使得∠MOC=30°,则点M的坐标为 .
9. 2021•北京市)在平面直角坐标系xOy中,若反比例函数y=(k≠0)的图象经过点A(1,2)和点B(﹣1,m),则m的值为 .
10. (2021•福建省)若反比例函数y=的图象过点(1,1),则k的值等于 .
11. (2021•广西玉林市) 如图,是等腰三角形,过原点,底边轴双曲线过,两点,过点作轴交双曲线于点,若,则的值是______.
12. (2021•山东省威海市)已知点A为直线上一点,过点A作轴,交双曲线于点B.若点A与点B关于y轴对称,则点A的坐标为_____________.
13. (2021•呼和浩特市)正比例函数与反比例函数的图象交于A,B两点,若A点坐标为,则__________.
14. (2021•齐齐哈尔市)如图,点A是反比例函数图象上一点,轴于点C且与反比例函数的图象交于点B, ,连接OA,OB,若的面积为6,则_________.
15. (2021•贵州省铜仁市)如图,矩形的顶点在反比例函数的图象上,矩形的面积为3,则______________;
16. (2021•浙江省衢州卷) 将一副三角板如图放置在平面直角坐标系中,顶点A与原点O重合,AB在x轴正半轴上,且,点E在AD上,,将这副三角板整体向右平移_______个单位,C,E两点同时落在反比例函数的图象上.
17. (2021•绥化市)如图,在平面直角坐标系中,为坐标原点,垂直于轴,以为对称轴作的轴对称图形,对称轴与线段相交于点,点的对应点恰好落在的双曲线上.点的对应点分别是点.若点为的中点,且,则的值为____.
18.(2021•深圳)如图,已知反比例函数过A,B两点,A点坐标,直线经过原点,将线段绕点B顺时针旋转90°得到线段,则C点坐标为________.
三、解答题
1. (湖北省黄冈市)如图,反比例函数的图象与一次函数y=mx+n的图象相交于A(a,﹣1),B(﹣1,3)
(1)求反比例函数和一次函数的解析式;
(2)设直线AB交y轴于点C,点N(t,0)是x轴正半轴上的一个动点的图象于点M,连接CN四边形COMN>3,求t的取值范围.
2. (2021•湖南省常德市)如图,在中,.轴,O为坐标原点,A的坐标为,反比例函数的图象的一支过A点,反比例函数的图象的一支过B点,过A作轴于H,若的面积为.
(1)求n的值;
(2)求反比例函数的解析式.
3. (2021•岳阳市) 如图,已知反比例函数与正比例函数的图象交于,两点.
(1)求该反比例函数的表达式;
(2)若点在轴上,且的面积为3,求点的坐标.
4. (2021•株洲市)如图所示,在平面直角坐标系中,一次函数的图像与函数的图像(记为)交于点A,过点A作轴于点,且,点在线段上(不含端点),且,过点作直线轴,交于点,交图像于点.
(1)求的值,并且用含的式子表示点的横坐标;
(2)连接、、,记、的面积分别为、,设,求的最大值.
5. (2021•江西省)如图,正比例函数y=x的图象与反比例函数y=(x>0)的图象交于点A(1,a)在△ABC中,∠ACB=90°,CA=CB,点C坐标为(﹣2,0).
(1)求k的值;
(2)求AB所在直线的解析式.
6. (2021•山东省聊城市)如图,过C点的直线y=﹣x﹣2与x轴,y轴分别交于点A,B两点,且BC=AB,过点C作CH⊥x轴,垂足为点H,交反比例函数y=(x>0)的图象于点D,连接OD,△ODH的面积为6
(1)求k值和点D的坐标;
(2)如图,连接BD,OC,点E在直线y=﹣x﹣2上,且位于第二象限内,若△BDE的面积是△OCD面积的2倍,求点E的坐标.
7. (2021•山东省泰安市)如图,点P为函数y=x+1与函数y=(x>0)图象的交点,点P的纵坐标为4,PB⊥x轴,垂足为点B.
(1)求m的值;
(2)点M是函数y=(x>0)图象上一动点,过点M作MD⊥BP于点D,若tan∠PMD=,求点M的坐标.
8. (2021•湖北省随州市)如图,一次函数的图象与轴、轴分别交于点,,与反比例函数()的图象交于点,.
(1)分别求出两个函数的解析式;
(2)连接,求的面积.
(1),;(2)3
9. (2021•山东省菏泽市)如图,在平面直角坐标系中,矩形OABC的两边OC、OA分别在坐标轴上,且OA=2,OC=4,连接OB.反比例函数y=(x>0)的图象经过线段OB的中点D,并与AB、BC分别交于点E、F.一次函数y=k2x+b的图象经过E、F两点.
(1)分别求出一次函数和反比例函数的表达式;
(2)点P是x轴上一动点,当PE+PF的值最小时,点P的坐标为 .
10. (2021•四川省成都市)如图,在平面直角坐标系xOy中,一次函数y=x+的图象与反比例函数y=(x>0)的图象相交于点A(a,3),与x轴相交于点B.
(1)求反比例函数的表达式;
(2)过点A的直线交反比例函数的图象于另一点C,交x轴正半轴于点D,当△ABD是以BD为底的等腰三角形时,求直线AD的函数表达式及点C的坐标.
11. (2021•广东省)在平面直角坐标系中,一次函数的图象与轴、轴分别交于、两点,且与反比例函数图象的一个交点为.
(1)求的值;
(2)若,求的值.
12. (2021•四川省广元市)如图,直线与双曲线相交于点A、B,已知点A的横坐标为1,
(1)求直线的解析式及点B的坐标;
(2)以线段为斜边在直线的上方作等腰直角三角形.求经过点C的双曲线的解析式.
13. (2021•四川省乐山市) 如图,直线分别交轴,轴于、两点,交反比例函数的图象于、两点.若,且的面积为4
(1)求的值;
(2)当点的横坐标为时,求的面积.
14. (2021•四川省凉山州)如图,中,,边OB在x轴上,反比例函数的图象经过斜边OA的中点M,与AB相交于点N,.
(1)求k的值;
(2)求直线MN的解析式.
15. (2021•四川省南充市)如图,反比例函数的图象与过点A(0,﹣1),B(4,1)的直线交于点B和C.
(1)求直线AB和反比例函数的解析式;
(2)已知点D(﹣1,0),直线CD与反比例函数图象在第一象限的交点为E,直接写出点E的坐标,并求△BCE的面积.
16. (2021•遂宁市)如图,一次函数=k x + b (k≠0)与反比例函数(m≠0)的图象交于点A(1,2)和B(-2,a),与y轴交于点M.
(1)求一次函数和反比例函数的解析式;
(2)在y轴上取一点N,当△AMN的面积为3时,求点N的坐标;
(3)将直线向下平移2个单位后得到直线y3,当函数值时,求x的取值范围.
17. (2021•湖北省恩施州)如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,坐标原点是BC的中点,∠ABC=30°,BC=4,双曲线y=经过点A.
(1)求k;
(2)直线AC与双曲线y=﹣在第四象限交于点D,求△ABD的面积.
18. (2021•浙江省湖州市)已知在平面直角坐标系xOy中,点A是反比例函数(x>0)图象上的一个动点,连结AO,AO的延长线交反比例函数(k>0,x<0)的图象于点B,过点A作AE⊥y轴于点E.
(1)如图1,过点B作BF⊥x轴于点F,连结EF.①若k=1,求证:四边形AEFO是平行四边形;②连结BE,若k=4,求△BOE的面积.
(2)如图2,过点E作EP∥AB,交反比例函数(k>0,x<0)的图象于点P,连结OP.试探究:对于确定的实数k,动点A在运动过程中,△POE的面积是否会发生变化?请说明理由.
19. (2021•山东省济宁市)如图,Rt△ABC中,∠ACB=90°,AC=BC,点C(2,0),点B(0,4),反比例函数y=(x>0)的图象经过点A.
(1)求反比例函数的解析式;
(2)将直线OA向上平移m个单位后经过反比例函数y=(x>0)图象上的点(1,n),求m,n的值.
20.( 2021•贵州省贵阳市)如图,一次函数y=kx﹣2k(k≠0)的图象与反比例函数y=(m﹣1≠0)的图象交于点C,与x轴交于点A,过点C作CB⊥y轴,垂足为B,若S△ABC=3.
(1)求点A的坐标及m的值;
(2)若AB=2,求一次函数的表达式.
中考一轮综合复习导学案(19)圆: 这是一份中考一轮综合复习导学案(19)圆,共18页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
中考一轮综合复习导学案(16)全等与相似: 这是一份中考一轮综合复习导学案(16)全等与相似,共9页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。
中考一轮综合复习导学案(11)几何初步与相交平行: 这是一份中考一轮综合复习导学案(11)几何初步与相交平行,共6页。学案主要包含了知识网络,要点梳理,2021中考汇编等内容,欢迎下载使用。