2022年新高考全国Ⅰ卷福建省数学高考真题+解析
展开绝密☆启用前 试卷类型:A
2022年普通高等学校招生全国统一考试
数学
本试卷共4页,22小题,满分150分.考试用时120分钟.
注意事项:
1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名、考生号、考场号和座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.将条形码横贴在答题卡右上角“条形码粘贴处”.
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.
3.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.
4.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1. 若集合,则( )
A. B. C. D.
2. 若,则( )
A. B. C. 1 D. 2
3. 在中,点D在边AB上,.记,则( )
A. B. C. D.
4. 南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A. B. C. D.
5. 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
6. 记函数的最小正周期为T.若,且的图象关于点中心对称,则( )
A. 1 B. C. D. 3
7. 设,则( )
A. B. C. D.
8. 已知正四棱锥侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且,则该正四棱锥体积的取值范围是( )
A. B. C. D.
二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.
9. 已知正方体,则( )
A. 直线与所成的角为 B. 直线与所成的角为
C. 直线与平面所成角为 D. 直线与平面ABCD所成的角为
10 已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
11. 已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则( )
A. C的准线为 B. 直线AB与C相切
C. D.
12. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
三、填空题:本题共4小题,每小题5分,共20分.
13. 展开式中的系数为________________(用数字作答).
14. 写出与圆和都相切的一条直线的方程________________.
15. 若曲线有两条过坐标原点的切线,则a的取值范围是________________.
16. 已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
17. 记为数列的前n项和,已知是公差为的等差数列.
(1)求的通项公式;
(2)证明:.
18. 记的内角A,B,C的对边分别为a,b,c,已知.
(1)若,求B;
(2)求的最小值.
19. 如图,直三棱柱的体积为4,的面积为.
(1)求A到平面的距离;
(2)设D为的中点,,平面平面,求二面角的正弦值.
20. 一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
| 不够良好 | 良好 |
病例组 | 40 | 60 |
对照组 | 10 | 90 |
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 | 0.010 | 0.001 | |
k | 3.841 | 6.635 | 10.828 |
21. 已知点在双曲线上,直线l交C于P,Q两点,直线的斜率之和为0.
(1)求l的斜率;
(2)若,求的面积.
22. 已知函数和有相同的最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
【高考真题】2022年高考数学真题试卷(新高考全国Ⅱ卷): 这是一份【高考真题】2022年高考数学真题试卷(新高考全国Ⅱ卷),共22页。
2021年高考真题辽宁卷数学试题(解析版): 这是一份2021年高考真题辽宁卷数学试题(解析版),共20页。试卷主要包含了 设集合,则,99与大于10, 已知,,,则下列判断正确的是等内容,欢迎下载使用。
2021年新高考全国1卷数学高考真题及答案解析 (原卷+解析卷): 这是一份2021年新高考全国1卷数学高考真题及答案解析 (原卷+解析卷),文件包含2021年全国新高考Ⅰ卷数学试题原卷版doc、2021年全国新高考Ⅰ卷数学试题解析版doc等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。