所属成套资源:人教版数学九年级下册同步讲义(教师版+原卷版)
初中数学人教版九年级下册26.2 实际问题与反比例函数测试题
展开
这是一份初中数学人教版九年级下册26.2 实际问题与反比例函数测试题,共11页。
第2课 实际问题与反比例函数 课程标准1. 能根据实际问题中的条件确定反比例函数的解析式,并能结合图象加深对问题的理解.2.根据条件求出函数解析式,运用学过的函数知识解决反比例函数的应用问题,体会数学与现实生活的紧密联系,增强应用意识. 知识点01 利用反比例函数解决实际问题基本思路:建立函数模型,即在实际问题中求得函数解析式,然后应用函数的图象和性质等知识解决问题.一般步骤如下:(1)审清题意,根据常量、变量之间的关系,设出函数解析式,待定的系数用字母表示.(2)由题目中的已知条件,列出方程,求出待定系数.(3)写出函数解析式,并注意解析式中变量的取值范围.(4)利用函数解析式、函数的图象和性质等去解决问题.知识点02 反比例函数在其他学科中的应用1、当圆柱体的体积一定时,圆柱的底面积是高的反比例函数;2、当工程总量一定时,做工时间是做工速度的反比例函数;3、在使用杠杆时,如果阻力和阻力臂不变,则动力是动力臂的反比例函数;4、电压一定,输出功率是电路中电阻的反比例函数. 考法01 反比例函数实际问题与图象【典例1】一张正方形的纸片,剪去两个一样的小矩形得到一个“E”图案,如图所示.设小矩形的长、宽分别为,剪去部分的面积为,若,则与的函数图象是( )【答案】A;【解析】根据题意求出函数的解析式,应该是反比例函数的一部分.【总结升华】对于函数图象的判断题,应首先求出函数解析式,分清函数的类型,然后再选择对应的图象,同时在实际问题中应注意自变量的取值范围. 【即学即练1】设从泉港到福州乘坐汽车所需的时间是t(小时),汽车的平均速度为v(千米/时),则下面大致能反映v与t的函数关系的图象是( )
A. B. C. D. 【答案】D;提示:设从泉港到福州的路程为k千米,依题意,得vt=k,所以v=(v>0,t>0),则函数图象为双曲线在第一象限的部分.故选D. 考法02 利用反比例函数解决实际问题【典例2】心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【思路点拨】(1)先用代定系数法分别求出AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【答案与解析】解:(1)设线段AB所在的直线的解析式为y1=k1x+20,把B(10,40)代入得,k1=2,∴y1=2x+20.设C、D所在双曲线的解析式为y2=,把C(25,40)代入得,k2=1000,∴当x1=5时,y1=2×5+20=30,当,∴y1<y2∴第30分钟注意力更集中.(2)令y1=36,∴36=2x+20,∴x1=8令y2=36,∴,∴∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【总结升华】主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值. 【即学即练2】为了预防“非典”,某学校对教室采用药薰消毒法进行消毒. 已知药物燃烧时,室内每立方米空气中的含药量(毫克)与时间(分钟)成正比例,药物燃烧完后,与成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克. 请根据题中所提供的信息解答下列问题: ①药物燃烧时关于的函数关系式为__________ ___,自变量 的取值范围是____________ ___;药物燃烧后关于的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?【答案】①药物燃烧时, 是的正比例函数,药物燃烧后,与成反比例,利用待定系数法即可求出函数的解析式:,0≤≤8,,;②当空气中每立方米的含药量等于1.6毫克时,求出所对应的时间:把=1.6代人到中,得=30,则至少经过30分钟后,学生才能回到教室;③把=3分别代人到和中,得=4和=16,16-4=12,12>10,所以此次消毒有效.【典例3】南宁市某生态示范村种植基地计划用90亩~120亩的土地种植一批葡萄,原计划总产量要达到36万斤.(1)列出原计划种植亩数(亩)与平均每亩产量(万斤)之间的函数关系式,并写出自变量的取值范围;(2)为了满足市场需求,现决定改良葡萄品种.改良后平均每亩产量是原计划的1.5倍,总产量比原计划增加了9万斤,种植亩数减少了20亩,原计划和改良后的平均每亩产量各是多少万斤?【思路点拨】(1)直接根据亩产量、亩数及总产量之间的关系得到函数关系式即可;(2)根据题意列出-=20后求解即可.【答案与解析】解:(1)由题意知:=36,故(≤≤)(2)根据题意得:-=20解得:=0.3 经检验,x=0.3是原方程的解.1.5=0.45(万斤)答:改良前亩产0.3万斤,改良后亩产0.45万斤.【总结升华】本题考查了反比例函数的应用,解题的关键是从复杂的实际问题中整理出反比例函数模型,并利用其解决实际问题.【典例4】如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y(微克/毫升)用药后的时间x(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当y=a时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?【思路点拨】利用待定系数法分别求出直线OA与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解.【答案与解析】解:设直线OA的解析式为y=kx,把(4,a)代入,得a=4k,解得k=,即直线OA的解析式为y=x.根据题意,(9,a)在反比例函数的图象上,则反比例函数的解析式为y=.当x=时,解得x=±6(负值舍去),故成人用药后,血液中药物则至少需要6小时达到最大浓度. 【总结升华】本题考查了反比例函数的应用,直线与双曲线交点的求法,利用待定系数法求出关系式是解题的关键. 题组A 基础过关练一.选择题1.已知压强的计算公式是P=,我们知道,刀具在使用一段时间后,就好变钝,如果刀刃磨薄,刀具就会变得锋利.下列说法中,能正确解释刀具变得锋利这一现象的是( )A.当受力面积一定时,压强随压力的增大而增大B.当受力面积一定时,压强随压力的增大而减小C.当压力一定时,压强随受力面积的减小而减小D.当压力一定时,压强随受力面积的减小而增大【答案】D.【解析】解:因为菜刀用过一段时间后,刀刃比原来要钝一些,切菜时就感到费力,磨一磨,根据压强公式P=,是在压力一定时,减小了受力面积,来增大压强,所以切菜时,用同样大小的力,更容易把菜切断,切菜时不至于那么费力.2. 现有一水塔,水塔内装有水,如果每小时从排水管中放水,则要经过小时求可以把水放完.该函数的图象应是如图所示中的( )【答案】C;【解析】由题意知,.3.在温度不变的条件下,通过一次又一次地对汽缸顶部的活塞加压,测出每一次加压后缸内气体的体积和气体对汽缸壁所产生的压强,如下表:体积10080604020压强6075100150300则可以反映与之间的关系的式子是( ).A.=3000 B. =6000 C. D.【答案】D;4.某一数学课外兴趣小组的同学每人制作一个面积为200的矩形学具进行展示.设矩形的宽为,长为,那么这些同学所制作的矩形的长与宽之间的函数关系的图象大致是( )【答案】A;5.下列各问题中两个变量之间的关系,不是反比例函数的是( ) A.小明完成百米赛跑时,所用时间t(s)与他的平均速度v()之间的关系B.长方形的面积为24,它的长与宽之间的关系C.压力为600N时,压强P(Pa)与受力面积S()之间的关系D.一个容积为25L的容器中,所盛水的质量与所盛水的体积V(L)之间的关系【答案】D;6.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间x(min)的关系如图所示,水温从100℃降到35℃所用的时间是( )A.27分钟 B.20分钟 C.13分钟 D. 7分钟【答案】C; 【解析】∵开机加热时每分钟上升10℃,∴从30℃到100℃需要7分钟,设一次函数关系式为:y=k1x+b,将(0,30),(7,100)代入y=k1x+b得k1=10,b=30∴y=10x+30(0≤x≤7),令y=50,解得x=2;设反比例函数关系式为:y=,将(7,100)代入y=得k=700,∴y=,将y=35代入y=,解得x=20;∴水温从100℃降到35℃所用的时间是20﹣7=13分钟,故选C. 题组B 能力提升练7.甲、乙两地间的公路长为300,一辆汽车从甲地去乙地,汽车在途中的平均速度为v(),到达时所用的时间为t(h),那么t是v的______函数,v关于t的函数关系式为______.【答案】反比例;;8.农村常需要搭建截面为半圆形的全封闭蔬菜塑料暖房(如图所示),则需要塑料布与半径R()的函数关系式是(不考虑塑料埋在土里的部分)__________________.【答案】.9. 某种蓄电池的电压为定值,使用此电源时,电流I(A)与可变电阻R(Ω)之间的函数关系如图所示,当用电器的电流为10A时,用电器的可变电阻为________Ω.【答案】3.6;【解析】设电流I与电阻R的关系式为,把(9,4)代入关系式得:=36.所以关系式为,当I=10时,R=3.6(Ω).10.如图所示的是一蓄水池每小时的排水量V()与排完水池中的水所用的时间t(h)之间的函数图象.(1)根据图象可知此蓄水池的蓄水量为______;(2)此函数的解析式为____________;(3)若要在6h内排完水池中的水,那么每小时的排水量至少应该是______;(4)如果每小时的排水量是5,那么水池中的水需要______h排完. 【答案】(1)48; (2); (3)8; (4)9.6.11.随着私家车的增加,城市的交通也越来越拥挤,通常情况下,某段高架桥上车辆的行驶速度y(千米/时)与高架桥上每百米拥有车的数量x(辆)的关系如图所示,当x≥10时,y与x成反比例函数关系,当车速度低于20千米/时,交通就会拥堵,为避免出现交通拥堵,高架桥上每百米拥有车的数量x应该满足的范围是 .【答案】0<x<40;提示:设反比例函数的解析式为:y=,则将(10,80),代入得:y=,故当车速度为20千米/时,则20=,解得:x=40,故高架桥上每百米拥有车的数量x应该满足的范围是:0<x<40.12.一定质量的二氧化碳,当体积为5时,密度为1.98,要使体积增加4,则它的密度为______.【答案】1.1;【解析】二氧化碳的质量为1.98×5=9.9,.题组C 培优拔尖练13.湖州市菱湖镇某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.(1)求鱼塘的长y(米)关于宽x(米)的函数表达式;(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米,鱼塘的长为多少米?【解析】解:(1)由长方形面积为2000平方米,得到xy=2000,即y=;(2)当x=20(米)时,y==100(米),则当鱼塘的宽是20米时,鱼塘的长为100米. 14. 你吃过拉面吗?实际上做拉面的过程中,渗透着数学知识:一定体积的面团做成拉面,面条的总长度是面条粗细(横截面积))的反比例函数,其图象如图所示. (1)写出与S的函数关系式;(2)求当面条粗1.6 时面条的总长度.【解析】解:(1)因为拉面总长度与面条的粗细(横截面积) 成反比例函数,故设其关系式为,又由于图象过P(4,32),则,∴ ,所以与S的函数关系式为.(2)当S=1.6时,,故当面条粗1.6 时,面条的总长度是80 . 15.小王骑自行车以15千米/时的平均速度从甲地到乙地用了4小时.(1)他坐在出租车从原路返回,出租车的平均速度v与时间t有怎样的函数关系?(2)如果小王必须在40分钟之内赶回,则返程时的速度至少为多少?【解析】解:(1)设甲、乙两地的距离为s千米,由题意,得s=15×4=60(千米).所以v与t的函数解析式为.(2)40=小时,把代入,得(千米/时).从结果可以看出,如果40分钟正好赶回,则速度为90千米/时,若少于40分钟赶回,则速度要超过90千米/时,即小王在40分钟之内赶回,速度至少为90千米/时.
相关试卷
这是一份初中数学人教版九年级下册26.2 实际问题与反比例函数练习,共37页。试卷主要包含了2 实际问题与反比例函数,4mB.1,2,,17,等内容,欢迎下载使用。
这是一份初中数学人教版九年级下册第二十六章 反比例函数26.2 实际问题与反比例函数优秀同步练习题,文件包含必刷提高练262实际问题与反比例函数原卷版docx、必刷提高练262实际问题与反比例函数解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
这是一份人教版九年级下册26.2 实际问题与反比例函数精品精练,文件包含必刷基础练262实际问题与反比例函数原卷版docx、必刷基础练262实际问题与反比例函数解析版docx等2份试卷配套教学资源,其中试卷共22页, 欢迎下载使用。